Skip to main content

Efficient Multiparty Computation for Arithmetic Circuits against a Covert Majority

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7918))

Abstract

We design a secure multiparty protocol for arithmetic circuits against covert adversaries in the dishonest majority setting. Our protocol achieves a deterrence factor of \(\left(1 - \frac{1}{t}\right)\) with O(Mn 2 t 2 s) communication complexity and O(Mn 3 t 2) exponentiations where s is the security parameter, n is the number of parties and M is the number of multiplication gates. Our protocol builds on the techniques introduced in (Mohassel and Weinreb, CRYPTO’08), extending them to work in the multiparty case, working with higher deterrence factors, and providing simulation-based security proofs. Our main underlying primitive is a lossy additive homomorphic public key encryption scheme where the lossiness is critical for the simulation-based proof of security to go through. Our concrete efficiency measurements show that our protocol performs better than previous solutions for a range of deterrence factors, for functions such as AES and matrix multiplication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. J. Cryptology 23(2), 281–343 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for Encryption and Commitment Secure under Selective Opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: STOC, pp. 1–10 (1988)

    Google Scholar 

  4. Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Applications (Extended Abstract). In: STOC, pp. 103–112 (1988)

    Google Scholar 

  5. Bogdanov, D., Talviste, R., Willemson, J.: Deploying Secure Multi-Party Computation for Financial Data Analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 57–64. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bogetoft, P., et al.: Secure Multiparty Computation Goes Live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Boneh, D., Franklin, M.K.: Efficient Generation of Shared RSA Keys. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. J. Cryptology 13(1), 143–202 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chaum, D., Crépeau, C., Damgård, I.: Multiparty Unconditionally Secure Protocols. In: STOC, pp. 11–19 (1988)

    Google Scholar 

  10. Damgård, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES via an Actively/Covertly Secure Dishonest-Majority MPC Protocol. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 241–263. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Damgård, I., Orlandi, C.: Multiparty Computation for Dishonest Majority: From Passive to Active Security at Low Cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty Computation from Somewhat Homomorphic Encryption. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Goyal, V., Mohassel, P., Smith, A.: Efficient Two Party and Multi Party Computation against Covert Adversaries, http://research.microsoft.com/en-us/um/people/vipul/eff-mpc.pdf

  14. Goyal, V., Mohassel, P., Smith, A.: Efficient Two Party and Multi Party Computation Against Covert Adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy Encryption: Constructions from General Assumptions and Efficient Selective Opening Chosen Ciphertext Security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Exchanging Information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Lindell, Y., Oxman, E., Pinkas, B.: The IPS Compiler: Optimizations, Variants and Concrete Efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259–276. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Mohassel, P., Weinreb, E.: Efficient Secure Linear Algebra in the Presence of Covert or Computationally Unbounded Adversaries. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 481–496. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nargis, I., Mohassel, P., Eberly, W. (2013). Efficient Multiparty Computation for Arithmetic Circuits against a Covert Majority. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds) Progress in Cryptology – AFRICACRYPT 2013. AFRICACRYPT 2013. Lecture Notes in Computer Science, vol 7918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38553-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38553-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38552-0

  • Online ISBN: 978-3-642-38553-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics