Skip to main content

Potential Functions in Strategic Games

  • Conference paper
Computer Science – Theory and Applications (CSR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7913))

Included in the following conference series:

  • 1089 Accesses

Abstract

We investigate here several categories of strategic games and antagonistic situations that are known to admit potential functions, and are thus guaranteed to either possess pure Nash equilibria or to stabilize in some form of equilibrium in cases of stochastic potentials. Our goal is to indicate the generality of this method and to address its limits.

This work was supported by the project Algorithmic Game Theory, co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: Thales, Investing in knowledge society through the European Social Fund, and by the EU FP7/2007-2013 (DG CONNECT – Communications Networks, Content and Technology Directorate General, Unit H5 – Smart Cities & Sustainability), under grant agreement no. 288094 (project eCOMPASS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilò, V., Fanelli, A., Flammini, M., Moscardelli, L.: Graphical Congestion Games. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 70–81. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Chen, X., Xiaotie, D.: Settling the complexity of two-player Nash equilibrium. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 261–272 (2006)

    Google Scholar 

  3. Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 169–178 (2007)

    Google Scholar 

  4. Díaz, J., Goldberg, L.A., Mertzios, G.B., Richerby, D., Serna, M.J., Spirakis, P.G.: Approximating fixation probabilities in the generalized Moran process. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 954–960 (2012)

    Google Scholar 

  5. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. System Sci. 57(2), 187–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fotakis, D., Gkatzelis, V., Kaporis, A.C., Spirakis, P.G.: The Impact of Social Ignorance on Weighted Congestion Games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 316–327. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Fotakis, D., Kaporis, A.C., Spirakis, P.G.: Atomic congestion games: fast, myopic and concurrent. Theory Comput. Syst. 47(1), 38–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fotakis, D., Kontogiannis, S., Spirakis, P.G.: Atomic congestion games among coalitions. ACM Transactions on Algorithms (TALG) 4(4), article No. 52 (2008)

    Google Scholar 

  9. Fotakis, D., Kontogiannis, S., Spirakis, P.G.: Selfish unsplittable flows. Theoretical Computer Science 348(2), 226–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability 14(3), 502–525 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127, 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2005)

    Article  Google Scholar 

  13. Monderer, D., Shapley, L.: Potential games. Games and Economic Behavior 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences 48(3), 498–532 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Panagopoulou, P.N., Spirakis, P.G.: Algorithms for pure Nash equilibria in weighted congestion games. ACM Journal of Experimental Algorithmics 11 (2006)

    Google Scholar 

  17. Panagopoulou, P.N., Spirakis, P.G.: A game theoretic approach for efficient graph coloring. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 183–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Panagopoulou, P.N., Spirakis, P.G.: Playing a game to bound the chromatic number. The American Mathematical Monthly 119(9), 771–778 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journals of Mathematics 5, 285–308 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  21. Topkis, D.: Equilibrium points in nonzero-sum n-person submodular games. SIAM Journal of Control and Optimization 17, 773–787 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Uno, H.: Strategic complementarities and nested potential games. Journal of Mathematical Economics 47(6), 728–732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spirakis, P.G., Panagopoulou, P.N. (2013). Potential Functions in Strategic Games. In: Bulatov, A.A., Shur, A.M. (eds) Computer Science – Theory and Applications. CSR 2013. Lecture Notes in Computer Science, vol 7913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38536-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38536-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38535-3

  • Online ISBN: 978-3-642-38536-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics