Skip to main content

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP

  • Conference paper
Computer Science – Theory and Applications (CSR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7913))

Included in the following conference series:

Abstract

We study the resolution complexity of Tseitin formulas over arbitrary rings in terms of combinatorial properties of graphs. We give some evidence that an expansion of a graph is a good characterization of the resolution complexity of Tseitin formulas. We extend the method of Ben-Sasson and Wigderson of proving lower bounds for the size of resolution proofs to constraint satisfaction problems under an arbitrary finite alphabet. For Tseitin formulas under the alphabet of cardinality d we provide a lower bound d e(G) − k for tree-like resolution complexity that is stronger than the one that can be obtained by the Ben-Sasson and Wigderson method. Here k is an upper bound on the degree of the graph and e(G) is the graph expansion that is equal to the minimal cut such that none of its parts is more than twice bigger than the other. We give a formal argument why a large graph expansion is necessary for lower bounds. Let G = 〈V,E 〉 be the dependency graph of the CSP, vertices of G correspond to constraints; two constraints are connected by an edge for every common variable. We prove that the tree-like resolution complexity of the CSP is at most \(d^{e(H) \cdot \log_{\frac{3}{2}} |V|}\) for some subgraph H of G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas. J. Autom. Reason. 35(1-3), 51–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker, A.B.: Intelligent backtracking on constraint satisfaction problems: Experimental and theoretical results (1995)

    Google Scholar 

  3. Buss, S., Grigoriev, D., Impagliazzo, R., Pitassi, T.: Linear gaps between degrees for the polynomial calculus modulo distinct primes. Journal of Computer and System Sciences, 547–556 (1999)

    Google Scholar 

  4. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow — resolution made simple. Journal of ACM 48(2), 149–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cook, J., Etesami, O., Miller, R., Trevisan, L.: Goldreich’s one-way function candidate and myopic backtracking algorithms. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 521–538. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Hwang, C.Y.J.: A Theoretical Comparison of Resolution Proof Systems for CSP Algorithms. Master’s thesis, Simon Fraser University (2004)

    Google Scholar 

  7. Impagliazzo, R., Pudlak, P., Sgall, J.: Lower bounds for the polynomial calculus and the grobner basis algorithm. Computational Complexity 8, 127–144 (1997)

    Article  MathSciNet  Google Scholar 

  8. Itsykson, D., Sokolov, D.: The complexity of inversion of explicit Goldreichs function by DPLL algorithms. Zapiski nauchnyh seminarov POMI 399, 88–109 (2012)

    Google Scholar 

  9. Itsykson, D.: Lower bound on average-case complexity of inversion of goldreich’s function by drunken backtracking algorithms. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 204–215. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Mitchell, D.G.: The resolution complexity of constraint satisfaction (2002)

    Google Scholar 

  11. Mitchell, D.G.: Resolution complexity of random constraints. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 295–309. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Mitchell, D.G.: Resolution and constraint satisfaction. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 555–569. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Tseitin, G.S.: On the complexity of derivation in the propositional calculus. Zapiski Nauchnykh Seminarov LOMI 8, 234–259 (1968); English translation of this volume: Consultants Bureau, N.Y., pp. 115–125 (1970)

    Google Scholar 

  14. Urquhart, A.: Hard examples for resolution. JACM 34(1), 209–219 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Itsykson, D., Oparin, V. (2013). Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP. In: Bulatov, A.A., Shur, A.M. (eds) Computer Science – Theory and Applications. CSR 2013. Lecture Notes in Computer Science, vol 7913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38536-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38536-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38535-3

  • Online ISBN: 978-3-642-38536-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics