Skip to main content

Systems Biology Approaches to Cancer Energy Metabolism

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 16))

Abstract

Application of Systems Biology approaches to energy metabolism of cancer cells help in the understanding of their controlling and regulatory mechanisms and identification of new drug targets. Our group built and validated a kinetic model of tumor glycolysis based on the experimental determination of all the enzyme/transporter kinetic parameters, metabolite concentrations, and fluxes in tumor cells. Model predictions enabled to understand how glycolysis is controlled and allowed identification of the main controlling steps which can be the most promising therapeutic targets. In this chapter, the model was extended to determine the contribution on the pathway function of the expression of different glycolytic isoforms displaying different catalytic properties, a feature commonly observed in tumor cells subjected to hypoxia. Model predictions now indicated that, by fully changing the glucose transporter (GLUT), hexokinase (HK), or both, from low- to high affinity isoforms, the glycolytic flux can be increased (GLUT+HK>GLUT>>HK); however, this concurred with a marked deregulation of the adenine nucleotides concentration. To gradually increase glycolytic flux with no alteration of adenine nucleotides homeostasis, which is closer to the physiological response of tumor cells, the model indicated that simultaneous expression in different ratios of GLUT and HK isoforms with different affinities should be accomplished. Mitochondrial metabolism is also active and essential for cancer cells. Therefore, a cancer energy metabolism model, including glycolysis and oxidative phosphorylation (Krebs cycle, respiratory chain, Pi/ADP transport, ATP synthase), should identify the most appropriate sites for successful multi-target therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALDO:

Aldolase

DHAP:

Dihydroxyacetone phosphate

ENO:

Enolase

Ery4P:

Erythrose-4-phosphate

FBP:

Fructose-1,6-bisphosphate

F6P:

Fructose-6-phosphate

F2,6BP:

Fructose-2,6-bisphosphate

C J Ei or FCC:

Flux control coefficient

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

G3P:

Glyceraldehyde-3-phosphate

G6P:

Glucose-6-phosphate

GLUT:

Glucose transporter

HK:

Hexokinase

HPI:

Hexosephosphate isomerase

KC:

Krebs cycle

LDH:

Lactate dehydrogenase

OxPhos:

Oxidative phosphorylation

PEP:

Phosphoenolpyruvate

Pyr:

Pyruvate

PFK-1:

Phosphofructokinase type 1

PFKFB3:

Phosphofructokinase type 2 B3

6PG:

6-phosphogluconate

PGK:

Phosphoglycerate kinase

PGAM:

3-phosphoglycerate mutase

PYK:

Pyruvate kinase

TK:

Transketolase

TPI:

Triosephosphate isomerase.

References

  • Achs MJ, Garfinkel L, Garfinkel D (1991) A computer model of pancreatic islet glycolysis. J Theor Biol 150:109–35

    Article  CAS  PubMed  Google Scholar 

  • Agrawal M, Santra SB, Anand R, Swaminathan R (2008) Effect of macromolecular crowding on the rate of diffusion-limited enzymatic reaction. Pramana 71:359–68

    Article  CAS  Google Scholar 

  • Amann T, Maegdefrau U, Hartmann A, Agaimy A, Marienhagen J, Weiss TS, Stoeltzing O, Warnecke C, Schölmerich J, Oefner PJ, Kreutz M, Bosserhoff AK, Hellerbrand C (2009) GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol 174:1544–52

    Article  CAS  PubMed  Google Scholar 

  • Baker SG, Kramer BS (2011) Systems biology and cancer: promises and perils. Prog Biophys Mol Biol 106:410–13

    Article  PubMed  Google Scholar 

  • Bakker BM, Walsh MC, Ter Kuile BH, Mensonides FI, Michels PA, Opperdoes FR, Westerhoff HV (1999) Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proc Natl Acad Sci USA 96:10098–103

    Article  CAS  PubMed  Google Scholar 

  • Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39:223–9

    Article  CAS  PubMed  Google Scholar 

  • Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    Article  PubMed  Google Scholar 

  • Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20:243–9

    Article  CAS  PubMed  Google Scholar 

  • Cascante M, Benito A, Zanuy M, Vizán P, Marín S, de Atauri P (2010) Metabolic network adaptations in cancer as targets for novel therapies. Biochem Soc Trans 38:1302–06

    Article  CAS  PubMed  Google Scholar 

  • Cassimeris L, Silva VC, Miller E, Ton Q, Molnar C, Fong J (2012) Fueled by microtubules: does tubulin dimer/polymer partitioning regulate intracellular metabolism? Cytoskeleton (Hoboken) 69:133–43

    Article  CAS  Google Scholar 

  • Chen V, Staub RE, Fong S, Tagliaferri M, Cohen I, Shtivelman E (2012) Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS. PLoS One 7:e30300

    Article  CAS  PubMed  Google Scholar 

  • Chirgwin JM, Parsons TF, Ernst AN (1975) Mechanistic implications of the pH independence of inhibition of phosphoglucose isomerase by neutral sugar phosphates. J Biol Chem 250:7277–79

    CAS  PubMed  Google Scholar 

  • Clem B, Telang S, Clem A et al (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7:110–20

    Article  CAS  PubMed  Google Scholar 

  • Colomer D, Vives-Corrons JL, Pujades A, Bartrons R (1987) Control of phosphofructokinase by fructose 2,6 bisphosphate in B-lymphocytes and B-chronic lymphocytic leukemia cells. Cancer Res 47:1859–62

    CAS  PubMed  Google Scholar 

  • Cortassa S, Aon MA (2012) Computational modeling of mitochondrial function. Methods Mol Biol 810:311–26

    Article  CAS  PubMed  Google Scholar 

  • Cortassa S, Aon MA, Marbán E, Winslow RL, O'Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84:2734–55

    Article  CAS  PubMed  Google Scholar 

  • Cortassa S, O'Rourke B, Winslow RL, Aon MA (2009) Control and regulation of integrated mitochondrial function in metabolic and transport networks. Int J Mol Sci 10:1500–13

    Article  CAS  PubMed  Google Scholar 

  • Dietzen DJ, Davis EJ (1993) Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria. Arch Biochem Biophys 305:91–102

    Article  CAS  PubMed  Google Scholar 

  • du Preez FB, Conradie R, Penkler GP, Holm K, van Dooren FL, Snoep JL (2008) A comparative analysis of kinetic models of erythrocyte glycolysis. J Theor Biol 252:488–96

    Article  PubMed  Google Scholar 

  • Eigenbrodt E, Fister P, Reinacher M (1985) New perspectives in carbohydrate metabolism in tumor cells. In: Reitner R (ed) Regulation of carbohydrate metabolism. CRC, Boca Raton, FL

    Google Scholar 

  • El-Bacha T, de Freitas MS, Sola-Penna M (2003) Cellular distribution of phosphofructokinase activity and implications to metabolic regulation in human breast cancer. Mol Genet Metab 79:294–9

    Article  CAS  PubMed  Google Scholar 

  • Evans A, Bates V, Troy H, Hewitt S, Holbeck S, Chung YL, Phillips R, Stubbs M, Griffiths J, Airley R (2008) GLUT1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through compare analysis and metabolomic studies. Cancer Chemother Pharmacol 61:377–93

    Article  CAS  PubMed  Google Scholar 

  • Fanciulli M, Bruno T, Giovannelli A, Gentile FP, Di Padova M, Rubiu O, Floridi A (2000) Energy metabolism of human LoVo colon carcinoma cells: correlation to drug resistance and influence of lonidamine. Clin Cancer Res 6:1590–97

    CAS  PubMed  Google Scholar 

  • Fell D (1997) Understanding the control of metabolism. Plenum, London

    Google Scholar 

  • Funasaka T, Hu H, Hogan V, Raz A (2007) Down-regulation of phosphoglucose isomerase/autocrine motility factor expression sensitizes human fibrosarcoma cells to oxidative stress leading to cellular senescence. J Biol Chem 282:36362–69

    Article  CAS  PubMed  Google Scholar 

  • Gaitonde MK, Murray E, Cunningham VJ (1989) Effect of 6-phosphogluconate on phosphoglucose isomerase in rat brain in vitro and in vivo. J Neurochem 52:1348–52

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MS, Sharp PA (2012) Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med 209:217–24

    Article  CAS  PubMed  Google Scholar 

  • Hellerstein MK (2008) A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery. Metab Eng 10:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–74

    Article  CAS  PubMed  Google Scholar 

  • Hornberg JJ, Binder B, Bruggeman FJ, Schoeberl B, Heinrich R, Westerhoff HV (2005) Control of MAPK signalling: from complexity to what really matters. Oncogene 24:5533–42

    Article  CAS  PubMed  Google Scholar 

  • Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J (2006) Cancer: a systems biology disease. Biosystems 83:81–90

    Article  CAS  PubMed  Google Scholar 

  • Hornberg JJ, Bruggeman FJ, Bakker BM, Westerhoff HV (2007) Metabolic control analysis to identify optimal drug targets. Prog Drug Res 64:173–89

    Google Scholar 

  • Hübner K, Sahle S, Kummer U (2011) Applications and trends in systems biology in biochemistry. FEBS J 278:2767–857

    Article  PubMed  Google Scholar 

  • Khayat ZA, McCall AL, Klip A (1998) Unique mechanism of GLUT3 glucose transporter regulation by prolonged energy demand: increased protein half-life. Biochem J 333:713–18

    CAS  PubMed  Google Scholar 

  • Kim JE, Ahn BC, Hwang MH, Jeon YH, Jeong SY, Lee SW, Lee J (2011) Combined RNA interference of hexokinase II and (131)I-sodium iodide symporter gene therapy for anaplastic thyroid carcinoma. J Nucl Med 52:1756–63

    Article  CAS  PubMed  Google Scholar 

  • Kohn MC, Achs MJ, Garfinkel D (1979) Computer simulation of metabolism in pyruvate-perfused rat heart. II. Krebs cycle. Am J Physiol 237:R159–R166

    CAS  PubMed  Google Scholar 

  • Kolodkin A, Boogerd FC, Plant N et al (2012) Emergence of the silicon human and network targeting drugs. Eur J Pharm Sci 46:190–7

    Article  CAS  PubMed  Google Scholar 

  • Kumagai S, Narasaki R, Hasumi K (2008) Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells. Biochem Biophys Res Commun 365:362–8

    Article  CAS  PubMed  Google Scholar 

  • Lee KA, Roth RA, LaPres JJ (2007) Hypoxia, drug therapy and toxicity. Pharmacol Ther 113:229–46

    Article  CAS  Google Scholar 

  • Levering J, Musters MW, Bekker M (2012) Role of phosphate in the central metabolism of two lactic acid bacteria: a comparative systems biology approach. FEBS J 279:1274–90

    Article  CAS  PubMed  Google Scholar 

  • Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22:165–78

    Article  CAS  PubMed  Google Scholar 

  • Mandujano-Tinoco EA, Gallardo-Pérez JC, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S (2013) Anti-mitochondrial therapy in human breast cáncer multi-cellular spheroids. Biochim Biophys Acta 1833:541–51

    Article  CAS  PubMed  Google Scholar 

  • Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Macías-Silva M, Sosa-Garrocho M, Moreno-Sánchez R (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 273:1975–88

    Article  PubMed  Google Scholar 

  • Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, Rodríguez-Enríquez S, Moreno-Sánchez R (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9:1084–101

    Article  PubMed  Google Scholar 

  • Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S, Encalada R, Moreno-Sánchez R, Saavedra E (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–67

    Article  PubMed  Google Scholar 

  • Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ (2004) 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64:31–4

    Article  CAS  PubMed  Google Scholar 

  • Mazat JP, Fromentin J, Heiske M, Nazaret C, Ransac S (2010) Virtual mitochondrion: towards an integrated model of oxidative phosphorylation complexes and beyond. Biochem Soc Trans 38:1215–19

    Article  CAS  PubMed  Google Scholar 

  • Meldolesi MF, Macchia V, Laccetti P (1976) Differences in phosphofructokinase regulation in normal and tumor rat thyroid cells. J Biol Chem 251:6244–51

    CAS  PubMed  Google Scholar 

  • Mendes P (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9:563–71

    CAS  PubMed  Google Scholar 

  • Mogilevskaya E, Demin O, Goryanin I (2006) Kinetic model of mitochondrial krebs cycle: unraveling the mechanism of salicylate hepatotoxic effects. J Biol Phys 32:245–71

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–418

    Article  PubMed  Google Scholar 

  • Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Olín-Sandoval V (2008) Metabolic control analysis: a tool for designing strategies to manipulate pathways. J Biomed Biotech 2008:597913

    Article  Google Scholar 

  • Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Gallardo-Pérez JC, Quezada H, Westerhoff HV (2010) Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 10:626–39

    Article  PubMed  Google Scholar 

  • Moreno-Sánchez R, Marín-Hernández A, Gallardo-Pérez JC, Quezada H, Encalada R, Rodríguez-Enríquez S, Saavedra E (2012) Phosphofructokinase type 1 kinetics, isoform expression and gene polymorphisms in cancer cells. J Cell Biochem 113:1692–703

    PubMed  Google Scholar 

  • Mosca E, Barcella M, Alfieri R, Bevilacqua A, Canti G, Milanesi L (2012) Systems biology of the metabolic network regulated by the Akt pathway. Biotechnol Adv 30:131–41

    Article  CAS  PubMed  Google Scholar 

  • Nagamatsu S, Sawa H, Inoue N, Nakamichi Y, Takeshima H, Hoshino T (1994) Gene expression of GLUT3 glucose transporter regulated by glucose in vivo in mouse brain and in vitro in neuronal cell cultures from rat embryos. Biochem J 300:125–31

    CAS  PubMed  Google Scholar 

  • Nakashima RA, Paggi MG, Scott LJ, Pedersen PL (1988) Purification and characterization of a bindable form of mitochondrial bound hexokinase from the highly glycolytic AS-30D rat hepatoma cell line. Cancer Res 48:913–19

    CAS  PubMed  Google Scholar 

  • Natsuizaka M, Ozasa M, Darmanin S, Miyamoto M, Kondo S, Kamada S, Shindoh M, Higashino F, Suhara W, Koide H, Aita K, Nakagawa K, Kondo T, Asaka M, Okada F, Kobayashi M (2007) Synergistic up-regulation of hexokinase-2, glucose transporters and angiogenic factors in pancreatic cancer cells by glucose deprivation and hypoxia. Exp Cell Res 313:3337–48

    Article  CAS  PubMed  Google Scholar 

  • Oskam R, Rijksen G, Staal GEJ, Vora S (1985) Isozymic composition and regulatory properties of phosphofructokinase from well-differentiated and anaplastic medullary thyroid carcinomas of the rat. Cancer Res 45:135–42

    CAS  PubMed  Google Scholar 

  • Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochem Biophys Acta 1555:14–20

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Hung P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–46

    Article  CAS  PubMed  Google Scholar 

  • Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Moreno-Sánchez R (2010a) Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 31:29–59

    Article  CAS  PubMed  Google Scholar 

  • Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R (2010b) The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation: why mitochondria are targets for cancer therapy. Mol Aspects Med 31:145–70

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Enríquez S, Torres-Márquez ME, Moreno-Sánchez R (2000) Substrate oxidation and ATP supply in AS-30D hepatoma cells. Arch Biochem Biophys 375:21–30

    Article  PubMed  Google Scholar 

  • Rodríguez-Enríquez S, Marín-Hernández A, Gallardo-Pérez JC, Moreno-Sánchez R (2009) Kinetics of transport and phosphorylation of glucose in cancer cells. J Cell Physiol 221:552–9

    Article  PubMed  Google Scholar 

  • Saavedra E, Marín-Hernández A, Encalada R, Olivos A, Mendoza-Hernández G, Moreno-Sánchez R (2007) Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica. FEBS J 274:4922–40

    Article  CAS  PubMed  Google Scholar 

  • Segel IH (1975) Enzyme kinetics. Wiley, New York

    Google Scholar 

  • Sheng H, Niu B, Sun H (2009) Metabolic targeting of cancers: from molecular mechanisms to therapeutic strategies. Curr Med Chem 16:1561–87

    Article  CAS  PubMed  Google Scholar 

  • Siess EA, Nimmannit S, Wieland OH (1976) Kinetic and regulatory properties of pyruvate dehydrogenase from Ehrlich ascites tumor cells. Cancer Res 36:55–9

    CAS  PubMed  Google Scholar 

  • Smith TAD (2000) Mammalian hexokinase and their abnormal expression in cancer. Br J Biomed Sci 57:170–8

    CAS  PubMed  Google Scholar 

  • Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–42

    CAS  PubMed  Google Scholar 

  • Soto AM, Sonnenschein C, Maini PK, Noble D (2011) Systems biology and cancer. Prog Biophys Mol Biol 106:337–9

    Article  PubMed  Google Scholar 

  • Staal GE, Kalff A, Heesbeen EC, van Veelen CW, Rijksen G (1987) Subunit composition, regulatory properties, and phosphorylation of phosphofructokinase from human gliomas. Cancer Res 47:5047–51

    CAS  PubMed  Google Scholar 

  • Stubbs M, Bashford CL, Griffiths JR (2003) Understanding the tumor metabolic phenotype in the genomic era. Curr Mol Med 3:49–59

    Article  CAS  PubMed  Google Scholar 

  • Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–9

    Article  CAS  PubMed  Google Scholar 

  • Teusink B, Passarge J, Reijenga CA et al (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–29

    Article  CAS  PubMed  Google Scholar 

  • van Gend C, Snoep JL (2008) Systems biology model databases and resources. Essays Biochem 45:223–6

    Article  PubMed  Google Scholar 

  • Vannucci SJ, Seaman LB, Vannucci RC (1996) Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain. J Cereb Blood Flow Metab 16:77–81

    Article  CAS  PubMed  Google Scholar 

  • Vopel T, Makhatadze GI (2012) Enzyme activity in the crowded milieu. PLoS One 7:e39418

    Article  CAS  PubMed  Google Scholar 

  • Vora S, Halper JP, Knowles DM (1985) Alterations in the activity and prolife of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation and progression-linked discriminants of malignancy. Cancer Res 45:2993–3001

    CAS  PubMed  Google Scholar 

  • Wei AC, Aon MA, O’Rourke B, Winslow R, Cortassa S (2011) Mitochondrial energetic, pH regulation, and ion dynamics: a computational-experimental approach. Biophys J 100:2894–903

    Article  CAS  PubMed  Google Scholar 

  • Westerhoff HV (2008) Signalling control strength. J Theor Biol 252:555–67

    Article  CAS  PubMed  Google Scholar 

  • Westerhoff HV (2011) Systems biology left and right. Methods Enzymol 500:3–11

    Article  CAS  PubMed  Google Scholar 

  • Widjojoatmodjo MN, Mancuso A, Blanch HW (1990) Mitochondrial hexokinase activity in a murine hybridoma. Biotech Lett 12:551–6

    Article  CAS  Google Scholar 

  • Wu F, Yang F, Vinnakota KC, Beard DA (2007) Computer modeling of mitocondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology. J Biol Chem 282:24525–37

    Article  CAS  PubMed  Google Scholar 

  • Xu RH, Pelicano H, Zhou Y (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–21

    Article  CAS  PubMed  Google Scholar 

  • Yalcin A, Telang S, Clem B, Chesney J (2009) Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol 86:174–9

    Article  CAS  PubMed  Google Scholar 

  • Zalitis J, Oliver IT (1967) Inhibition of glucose phosphate isomerase by metabolic intermediates of fructose. Biochem J 102:753–9

    CAS  PubMed  Google Scholar 

  • Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, Ledoux SP, Tan M (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 9:33

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was partially supported by the following grants from CONACyT-México: Nos. 180322 (AM-H); 107183 (SR-E); 80534 and 123636 (RM-S); and 83084 and 178638 (ES); and from the Instituto de Ciencia y Tecnología del Distrito Federal No. PICS08-5 (RM-S).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Moreno-Sánchez or Emma Saavedra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marín-Hernández, A., López-Ramírez, S.Y., Gallardo-Pérez, J.C., Rodríguez-Enríquez, S., Moreno-Sánchez, R., Saavedra, E. (2014). Systems Biology Approaches to Cancer Energy Metabolism. In: Aon, M., Saks, V., Schlattner, U. (eds) Systems Biology of Metabolic and Signaling Networks. Springer Series in Biophysics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38505-6_9

Download citation

Publish with us

Policies and ethics