Skip to main content

From Physiology, Genomes, Systems, and Self-Organization to Systems Biology: The Historical Roots of a Twenty-First Century Approach to Complexity

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 16))

Abstract

Systems Biology represents a new paradigm aiming at a whole organism-level understanding of biological phenomena, emphasizing interconnections and functional interrelationships rather than component parts. Historically, the roots of Systems Biology are multiple and of a diverse nature, comprising theoretical and conceptual developments, mathematical and modeling tools, and comprehensive analytical methodologies aimed at listing molecular components.

As a systemic approach, modern Systems Biology is deeply rooted in Integrative Physiology from which it inherits two big foundational principles: (1) a non-reductionist, integrative, view and (2) the capability of defining the context within which genes and their mutations will find meaning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Modern Phys 74:47–97

    Article  Google Scholar 

  • Alon U (2007) An introduction to systems biology. Design principles of biological circuits. Chapman & Hall/CRC, London

    Google Scholar 

  • Aon MA (2013) Systems biology of networks: the riddle and the challenge. In: Aon MA, Saks V, Schlattner U (Eds) Systems biology of metabolic and signaling networks. Springer, Heidelberg

    Google Scholar 

  • Aon MA, Cortassa S (2009) Chaotic dynamics, noise and fractal space in biochemistry. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, New York

    Google Scholar 

  • Aon MA, Cortassa S, Lloyd D (2012) Chaos in biochemistry and physiology. In: Meyers RA (ed) Advances in molecular biology and medicine: systems biology. Wiley-VCH Verlag GmBH & Co. KGaA, Weinheim, pp 239–275

    Google Scholar 

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of Pneumococcal types : induction of transformation by a Desoxyribonucleic acid fraction isolated from Pneumococcus type Iii. J Exp Med 79:137–58

    Article  PubMed  CAS  Google Scholar 

  • Ball P (2004) The self-made tapestry. Pattern formation in nature. Oxford University Press, Oxford, UK

    Google Scholar 

  • Barabasi AL (2003) Linked. Plume, New York

    Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–12

    Article  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–13

    Article  PubMed  CAS  Google Scholar 

  • Bernard C (1927) Introduction a l’etude de la medicine experimentale. McMillan, New York

    Google Scholar 

  • Brown JH, West GB, Enquist BJ (2000) Scaling in biology. Oxford University Press, New York

    Google Scholar 

  • Cannon WB (1932) The wisdom of the body. Norton, New York

    Google Scholar 

  • Capra F (1996) The web of life. Anchor books Doubleday, New York

    Google Scholar 

  • Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Sub Biochem 17:65–134

    CAS  Google Scholar 

  • Cortassa S, Aon MA, Iglesias AA, Aon JC, Lloyd D (2012) An introduction to metabolic and cellular engineering, 2nd edn. World Scientific, Singapore

    Google Scholar 

  • Crick FH (1957) On protein synthesis. Symp Soc Exp Biol 12:138–63

    Google Scholar 

  • Delbruck M (1949) Discussioneditor Unites biologiques douees de continuite genetique. Editions du CNRS, Lyon, p 33

    Google Scholar 

  • Driever W, Nusslein-Volhard C (1988a) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Nusslein-Volhard C (1988b) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93

    Article  PubMed  CAS  Google Scholar 

  • Dyson F (1985) Infinite in all directions. Harper & Row, New York

    Google Scholar 

  • Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  • Fell D (1997) Understanding the control of metabolism. Cambridge University Press, London

    Google Scholar 

  • Fox Keller E (2000) The century of the gene. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Fox Keller E (2002) Making sense of life. Explaining biological development with models, metaphors, and machines. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410:277–84

    Article  PubMed  CAS  Google Scholar 

  • Gleick J (1988) Chaos: making a new science. Penguin, New York

    Google Scholar 

  • Gleick J (2003) Isaac Newton. Pantheon, New York

    Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–8

    Article  PubMed  CAS  Google Scholar 

  • Goodwin BC (1963) Temporal organization in cells. A dynamic theory of cellular control processes. Academic, London

    Google Scholar 

  • Gurdon JB, Laskey RA, De Robertis EM, Partington GA (1979) Reprogramming of transplanted nuclei in amphibia. Int Rev Cytol Suppl 1979:161–78

    Google Scholar 

  • Haken H (1978) Synergetics. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42:89–95

    Article  PubMed  CAS  Google Scholar 

  • Helms V (2008) Principles of computation cell biology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–44

    PubMed  CAS  Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Methuen, London

    Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–56

    Article  PubMed  CAS  Google Scholar 

  • Jantsch E (1980) The self-organizing universe. Scientific and human implications of the emerging paradigm of evolution. Pergamon, New York

    Google Scholar 

  • Junker BH (2008) Networks in biology. In: Junker BH, Schreiber F (eds) Analysis of biological networks. Wiley-Interscience, Hoboken, NJ, pp 3–14

    Chapter  Google Scholar 

  • Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    PubMed  CAS  Google Scholar 

  • Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: epigenetics and metabolism. Cell 148:24–8

    Article  PubMed  CAS  Google Scholar 

  • Keilin D (1929) Cytochrome and respiratory enzymes. Proc Royal Soc Lond B: Biol Sci 104:206–52

    Article  CAS  Google Scholar 

  • Kitano H (2002a) Computational systems biology. Nature 420:206–10

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2002b) Systems biology: a brief overview. Science 295:1662–4

    Article  PubMed  CAS  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–53

    CAS  Google Scholar 

  • Krebs HA (1953) Nobel lecture. The citric acid cycle

    Google Scholar 

  • Krebs HA, Johnson WA (1937) Metabolism of ketonic acids in animal tissues. Biochem J 31:645–60

    PubMed  CAS  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  Google Scholar 

  • Lipmann F (1941) Metabolic generation and utilization of phosphate bond energy. Adv Enzymol 18:99–162

    Google Scholar 

  • Lloyd D (1992) Intracellular time keeping: epigenetic oscillations reveal the functions of an ultradian clock. In: Lloyd D, Rossi EL (eds) Ultradian rhythms in life processes. Springer, London, pp 5–22

    Chapter  Google Scholar 

  • Lloyd D, Rossi EL (2008) Epilogue: a new vision of life. In: Lloyd D, Rossi EL (eds) Ultradian rhythms from molecules to mind. Springer Science+Business Media BV, New York, pp 431–39

    Chapter  Google Scholar 

  • Lloyd D, Cortassa S, O’Rourke B, Aon MA (2012) What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival. Integr Biol (Camb) 4:65–74

    Article  CAS  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–41

    Article  Google Scholar 

  • Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metabol 16:9–17

    Article  CAS  Google Scholar 

  • Mandelbrot BB (1977) The fractal geometry of nature. WH Freeman, New York

    Google Scholar 

  • May RM (1974) Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186:645–7

    Article  PubMed  CAS  Google Scholar 

  • May RM (2001) Stability and complexity in model ecosystems. Princeton University Press, Princeton, NJ

    Google Scholar 

  • McKnight SL (2010) On getting there from here. Science 330:1338–9

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic, London

    Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–8

    Article  PubMed  CAS  Google Scholar 

  • Mitchell M (2009) Complexity. A guided tour. Oxford University Press, New York

    Google Scholar 

  • Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Article  PubMed  CAS  Google Scholar 

  • Morgan TH (1934) Embryology and genetics. Columbia University Press, New York

    Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems : from dissipative structures to order through fluctuations. Wiley, New York, p 491, p xii

    Google Scholar 

  • Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–602

    Article  PubMed  CAS  Google Scholar 

  • Noble D (2006) The music of life. Biology beyond the genome. Oxford University Press, Oxford

    Google Scholar 

  • Noble D, Boyd CAR (1993) The challenge of integrative physiology. In: Boyd CAR, Noble D (eds) The logic of life. The challenge of integrative physiology. Oxford University Press, New York, pp 1–13

    Google Scholar 

  • Pardee AB, Yates RA (1956) Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism. J Biol Chem 221:757–70

    PubMed  CAS  Google Scholar 

  • Poincare JH (1892) Les methodes nouvelles de la mechanique celeste. Washington, DC: English translation NASA (1967)

    Google Scholar 

  • Saks V, Monge C, Anmann T, Dzeja PP (2007) Integrated and organized cellular energetic systems: theories of cell energetics, compartmentation, and metabolic channeling. In: Saks V (ed) Molecular system bioenergetics: energy for life. Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, pp 59–109

    Chapter  Google Scholar 

  • Saks V, Monge C, Guzun R (2009) Philosophical basis and some historical aspects of systems biology: from Hegel to Noble—applications for bioenergetic research. Int J Mol Sci 10:1161–92

    Article  PubMed  CAS  Google Scholar 

  • Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Karu-Varikmaa M, Kaambre T, Dos Santos P, Boucher F, Guzun R (2012) Intracellular energetic units regulate metabolism in cardiac cells. J Mol Cell Cardiol 52:419–36

    Article  PubMed  CAS  Google Scholar 

  • Saunders PT, Kubal C (1989) Bifurcation and the epigenetic landscape. In: Goodwin BC, Saunders PT (eds) Theoretical biology. Epigenetic and evolutionary order from complex systems. Edinburgh University Press, Edinburgh, pp 16–30

    Google Scholar 

  • Savinell JM, Palsson BO (1992a) Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods. J Theor Biol 155:201–14

    Article  PubMed  CAS  Google Scholar 

  • Savinell JM, Palsson BO (1992b) Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. J Theor Biol 155:215–42

    Article  PubMed  CAS  Google Scholar 

  • Skyttner L (2007) General systems theory. Problems, perspective, practice. World Scientific Publishing Co, Singapore

    Google Scholar 

  • Strogatz SH (2003) Sync. The emerging science of spontaneous order. Hyperion books, New York

    Google Scholar 

  • Sweeney BM, Hastings JW (1960) Effects of temperature upon diurnal rhythms. Cold Spring Harb Symp Quant Biol 25:87–104

    Article  PubMed  CAS  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B237:37–72

    CAS  Google Scholar 

  • Umbarger HE (1956) Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science 123:848

    Article  PubMed  CAS  Google Scholar 

  • Vidal M (2009) A unifying view of 21st century systems biology. FEBS Lett 583:3891–4

    Article  PubMed  CAS  Google Scholar 

  • Von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111:23–9

    Article  Google Scholar 

  • Waddington CH (1942) Endeavour 1:18–20

    Google Scholar 

  • Waddington CH (1957) Strategy of the genes. Allen & Unwin, London

    Google Scholar 

  • Watson JD, Crick FH (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–7

    Article  PubMed  CAS  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–2

    Article  PubMed  CAS  Google Scholar 

  • Weber M (2005) Philosophy of experimental biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Westerhoff HV, Kolodkin A, Conradie R, Wilkinson SJ, Bruggeman FJ, Krab K, van Schuppen JH, Hardin H, Bakker BM, Mone MJ, Rybakova KN, Eijken M, van Leeuwen HJ, Snoep JL (2009) Systems biology towards life in silico: mathematics of the control of living cells. J Math Biol 58:7–34

    Article  PubMed  Google Scholar 

  • Whitfield J (2006) In the beat of a heart. Life, energy, and the unity of nature. Joseph Henry Press, Washington, DC

    Google Scholar 

  • Wiener N (1948) Cybernetics: or control and communication in the animal and the machine. MIT Press, Boston

    Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–3

    Article  PubMed  CAS  Google Scholar 

  • Wilson KG (1983) The renormalization group and critical phenomena. Rev Modern Phys 55:583–600

    Article  Google Scholar 

  • Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:15–42

    Article  PubMed  CAS  Google Scholar 

  • Winfree AT (2002) Oscillating systems. On emerging coherence. Science 298:2336–7

    Article  PubMed  CAS  Google Scholar 

  • Yates FE (1987) Self-organizing systems. General introduction. In: Yates FE (ed) Self-organizing systems. The emergence of order. Plenum, New York, pp 1–14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Aon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aon, M.A., Lloyd, D., Saks, V. (2014). From Physiology, Genomes, Systems, and Self-Organization to Systems Biology: The Historical Roots of a Twenty-First Century Approach to Complexity. In: Aon, M., Saks, V., Schlattner, U. (eds) Systems Biology of Metabolic and Signaling Networks. Springer Series in Biophysics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38505-6_1

Download citation

Publish with us

Policies and ethics