Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 7776))

Abstract

As a recurrent problem in numerical analysis and computational science, eigenvector and eigenvalue determination usually employs high-performance linear algebra libraries. This paper explores the implementation of high-performance routines for the solution of multiple large Hermitian eigenvector and eigenvalue systems on a Graphics Processing Unit (GPU). We report a performance increase of up to two orders of magnitude over the original \(\textsc{Eispack} {}\) routines with a NVIDIA Tesla C2050 GPU, providing an effective order of magnitude increase in unit cell size or simulated resolution for Inelastic Neutron Scattering (INS) modelling from atomistic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bethel, E., van Rosendale, J., Southard, D., Gaither, K., Childs, H., Brugger, E., Ahern, S.: Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys. IEEE Computer Graphics and Applications 31(1), 90–95 (2011)

    Article  Google Scholar 

  2. Cline, A.K., Meyering, J.: Converting eispack to run efficiently on a vector processor. Tech. rep., Pleasant Valley Software, Austin, Texas (1991)

    Google Scholar 

  3. Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Numerical linear algebra for high-performance computers, 2nd edn. SIAM (1998)

    Google Scholar 

  4. Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., Dongarra, J.: From CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming. Parallel Computing (2011) (in Press), doi:10.1016/j.parco.2011.10.002

    Google Scholar 

  5. Feldman, S.: A Fortran to C converter. ACM SIGPLAN Fortran Forum 9(2), 21–22 (1990)

    Article  Google Scholar 

  6. Gale, J.D., Rohl, A.L.: The general utility lattice program (GULP). Molecular Simulation 29(5), 291–341 (2003)

    Article  MATH  Google Scholar 

  7. Garba, M., González-Vélez, H.: Towards ad-hoc GPU acceleration of parallel eigensystem computations. In: ECMS 2011: 25th European Conference on Modelling and Simulation. ECMS, Krakow (June 2011)

    Google Scholar 

  8. Garba, M., González-Vélez, H., Roach, D.: Parallel computational modelling of inelastic neutron scattering in multi-node and multi-core architectures. In: 11th IEEE Int. Conf. on High Performance Computing and Communications, pp. 509–514. IEEE, Melbourne (2010)

    Google Scholar 

  9. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A memory model for scientific algorithms on graphics processors. In: SC 2006: ACM/IEEE Conf. on Supercomputing, p. 6. IEEE, Tampa (2006)

    Google Scholar 

  10. Kirk, D., Wen-mei, W.: Programming massively parallel processors: A Hands-on approach. Morgan Kaufmann Publishers Inc., San Francisco (2010)

    Google Scholar 

  11. Lee, S., Min, S.J., Eigenmann, R.: Openmp to gpgpu: a compiler framework for automatic translation and optimization. SIGPLAN Not. 44, 101–110 (2009)

    Article  Google Scholar 

  12. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue 6(2), 40–53 (2008)

    Article  Google Scholar 

  13. Nvidia Corporation: NVIDIA CUDA C Programming Best Practices Guide. Manual Version 2.3, NVIDIA (2009), http://developer.nvidia.com/ (last accessed: February 1, 2011)

  14. Roach, D., Ross, K., Gale, J.D.: The application of coherent inelastic neutron scattering to the study of polycrystalline materials (2012) (in Preparation)

    Google Scholar 

  15. Roach, D.L., Gale, J., Ross, D.: Scatter: A New Inelastic Neutron Scattering Simulation Subroutine for GULP. Neutron News 18(3), 21–23 (2007)

    Article  Google Scholar 

  16. Smith, B.T., Boyle, J.M., Dongarra, J., Garbow, B.S., Ikebe, Y., Klema, V.C., Moler, C.B.: Matrix Eigensystem Routines - EISPACK Guide, 2nd edn. LNCS, vol. 6. Springer, Heidelberg (1976)

    Book  MATH  Google Scholar 

  17. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid GPU accelerated manycore systems. Parallel Computing 36(5-6), 232–240 (2010)

    Article  MATH  Google Scholar 

  18. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for multicore with GPU accelerators. In: IPDPS 2010 Workshops, pp. 1–8. IEEE, Atlanta (2010)

    Google Scholar 

  19. Ueng, S.-Z., Lathara, M., Baghsorkhi, S.S., Hwu, W.-m.W.: CUDA-lite: Reducing GPU programming complexity. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 1–15. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Vázquez, F., Fernández, J.J., Garzón, E.M.: A new approach for sparse matrix vector product on NVIDIA GPUs. Concurrency and Computation: Practice and Experience 23(8), 815–826 (2011)

    Article  Google Scholar 

  21. Wilkinson, J., Reinsch, C.: Linear Algebra. Handbook for Automatic Computation, vol. 2. Springer (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garba, M.T., González–Vélez, H., Roach, D.L. (2013). GPU Acceleration for Hermitian Eigensystems. In: Nguyen, NT., Kołodziej, J., Burczyński, T., Biba, M. (eds) Transactions on Computational Collective Intelligence X. Lecture Notes in Computer Science, vol 7776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38496-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38496-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38495-0

  • Online ISBN: 978-3-642-38496-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics