Skip to main content

Dictyostelium discoideum as a Model in Biomedical Research

  • Chapter
  • First Online:
Dictyostelids

Abstract

The simple eukaryote Dictyostelium discoideum has been traditionally used to understand basic principles of cell and developmental biology and now has also become a useful system in biomedical research. What are the similarities and differences between D. discoideum and other simple microbial models such as Saccharomyces cerevisiae? Which aspects are more advantageous to address in D. discoideum? Are there any processes or specific proteins present in D. discoideum that are difficult or impossible to study in other systems? Does it make sense to use such a simple organism in biomedicine? These and other questions will be addressed in this chapter, together with some specific examples in which D. discoideum has proved its potential to model human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi H, Hasebe T, Yoshinaga K, Ohta T, Sutoh K (1994) Isolation of Dictyostelium discoideum cytokinesis mutants by restriction enzyme-mediated integration of the blasticidin S resistance marker. Biochem Biophys Res Commun 205:1808–1814

    Article  CAS  PubMed  Google Scholar 

  • Alexander S, Alexander H (2011) Lead genetic studies in Dictyostelium discoideum and translational studies in human cells demonstrate that sphingolipids are key regulators of sensitivity to cisplatin and other anticancer drugs. Semin Cell Dev Biol 22(1):97–104. doi:10.1016/j.semcdb.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  • Allison JH, Boshans RL, Hallcher LM, Packman PM, Sherman WR (1980) The effects of lithium on myo-inositol levels in layers of frontal cerebral cortex, in cerebellum, and in corpus callosum of the rat. J Neurochem 34(2):456–458

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Rojo F, Martinez JL (1999) Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol 1(5):421–430

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Kawata T, Williams JG (2012) Identification of the kinase that activates a nonmetazoan STAT gives insights into the evolution of phosphotyrosine-SH2 domain signaling. Proc Natl Acad Sci USA 109(28):E1931–1937. doi:10.1073/pnas.1202715109

  • Arhzaouy K, Strucksberg KH, Tung SM, Tangavelou K, Stumpf M, Faix J, Schroder R, Clemen CS, Eichinger L (2012) Heteromeric p97/p97(R155C) complexes induce dominant negative changes in wild-type and autophagy 9-deficient Dictyostelium strains. PLoS ONE 7(10):e46879. doi:10.1371/journal.pone.0046879

    Article  CAS  PubMed  Google Scholar 

  • Arias E, Cuervo AM (2011) Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 23(2):184–189. doi:10.1016/j.ceb.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  • Ashworth JM, Sussman M (1967) The appearance and disappearance of uridine diphosphate glucose pyrophosphorylase activity during differentiation of the cellular slime mold Dictyostelium discoideum. J Biol Chem 242:1696–1700

    CAS  PubMed  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27(10):595–600. doi:10.1016/j.tins.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  • Batsios P, Peter T, Baumann O, Stick R, Meyer I, Graf R (2012) A lamin in lower eukaryotes? Nucleus 3(3):237–243. doi:10.4161/nucl.20149

    Article  PubMed  Google Scholar 

  • Bear JE, Rawls JF, Saxe III CL (1998) SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J Cell Biol 142:1325–1335

    Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59(3):411–419

    Article  CAS  PubMed  Google Scholar 

  • Boeckeler K, Adley K, Xu X, Jenkins A, Jin T, Williams RS (2006) The neuroprotective agent, valproic acid, regulates the mitogen-activated protein kinase pathway through modulation of protein kinase A signalling in Dictyostelium discoideum. Eur J Cell Biol 85(9–10):1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Bokko PB, Francione L, Bandala-Sanchez E, Ahmed AU, Annesley SJ, Huang X, Khurana T, Kimmel AR, Fisher PR (2007) Diverse cytopathologies in mitochondrial disease are caused by AMP-activated protein kinase signaling. Mol Biol Cell 18(5):1874–1886

    Article  CAS  PubMed  Google Scholar 

  • Bonner JT (1947) Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. J Exp Zool 106:1–26

    Article  CAS  PubMed  Google Scholar 

  • Bozzaro S, Bucci C, Steinert M (2008) Phagocytosis and host–pathogen interactions in Dictyostelium with a look at macrophages. Int Rev Cell Mol Biol 271:253–300. doi:10.1016/S1937-6448(08)01206-9

    Article  CAS  PubMed  Google Scholar 

  • Bradbury RS, Reid DW, Inglis TJ, Champion AC (2011) Decreased virulence of cystic fibrosis Pseudomonas aeruginosa in Dictyostelium discoideum. Microbiol Immunol 55(4):224–230. doi:10.1111/j.1348-0421.2011.00314.x

    Article  CAS  PubMed  Google Scholar 

  • Breen G, Harwood AJ, Gregory K, Sinclair M, Collier D, St Clair D, Williams RS (2004) Two peptidase activities decrease in treated bipolar disorder not schizophrenic patients. Bipolar Disord 6(2):156–161

    Google Scholar 

  • Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25(1–2):17–26. doi:10.1016/j.mam.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Garrido J, Carilla-Latorre S, Kubohara Y, Santos-Rodrigo N, Mesquita A, Soldati T, Golstein P, Escalante R (2010) Autophagy in Dictyostelium: genes and pathways, cell death and infection. Autophagy 6(6):686–701 12513 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Garrido J, Carilla-Latorre S, Lazaro-Dieguez F, Egea G, Escalante R (2008) Vacuole membrane protein 1 is an endoplasmic reticulum protein required for organelle biogenesis, protein secretion, and development. Mol Biol Cell 19(8):3442–3453. doi:10.1091/mbc.E08-01-0075

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Garrido J, Carilla-Latorre S, Mesquita A, Escalante R (2011) A proteolytic cleavage assay to monitor autophagy in Dictyostelium discoideum. Autophagy 7(9):1063–1068. doi:10.4161/auto.7.9.16629

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Garrido J, Escalante R (2010) Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1. Autophagy 6(1):100–109

    Article  CAS  PubMed  Google Scholar 

  • Carilla-Latorre S, Calvo-Garrido J, Bloomfield G, Skelton J, Kay RR, Ivens A, Martinez JL, Escalante R (2008) Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains. BMC Microbiol 8:109. doi:10.1186/1471-2180-8-109

    Article  PubMed  CAS  Google Scholar 

  • Carilla-Latorre S, Gallardo ME, Annesley SJ, Calvo-Garrido J, Grana O, Accari SL, Smith PK, Valencia A, Garesse R, Fisher PR, Escalante R (2010) MidA is a putative methyltransferase that is required for mitochondrial complex I function. J Cell Sci 123(Pt 10):1674–1683. doi:10.1242/jcs.066076

    Article  CAS  PubMed  Google Scholar 

  • Chang P, Orabi B, Deranieh RM, Dham M, Hoeller O, Shimshoni JA, Yagen B, Bialer M, Greenberg ML, Walker MC, Williams RS (2012) The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyostelium. Dis Model Mech 5(1):115–124. doi:10.1242/dmm.008029

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Park C, Jeong JW (2010) AMP-activated protein kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 391(1):147–151. doi:10.1016/j.bbrc.2009.11.022

    Article  CAS  PubMed  Google Scholar 

  • Condeelis J, Jones J, Segall JE (1992) Chemotaxis of metastatic tumor cells: Clues to mechanisms from the Dictyostelium paradigm. Cancer Metastasis Rev 11:55–68

    Article  CAS  PubMed  Google Scholar 

  • Cosson P, Zulianello L, Join-Lambert O, Faurisson F, Gebbie L, Benghezal M, van Delden C, Curty LK, Kohler T (2002) Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bact 184:3027–3033

    Article  CAS  PubMed  Google Scholar 

  • de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4(8):e1000117. doi:10.1371/journal.ppat.1000117

    Article  PubMed  CAS  Google Scholar 

  • De Lozanne A, Spudich JA (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236:1086–1091

    Article  PubMed  Google Scholar 

  • Debray FG, Lambert M, Mitchell GA (2008) Disorders of mitochondrial function. Curr Opin Pediatr 20(4):471–482. doi:10.1097/MOP.0b013e328306ebb6

    Article  PubMed  Google Scholar 

  • Depraitere C, Darmon M (1978) Croissance de l’amibe sociale Dictyostelium discoideum sur differentes especes bacteriennes. Ann Microbiol (Inst Pasteur) 129B:451–461

    Google Scholar 

  • DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123. doi:10.1146/annurev.neuro.30.051606.094302

    Article  CAS  PubMed  Google Scholar 

  • Dubin M, Nellen W (2010) A versatile set of tagged expression vectors to monitor protein localisation and function in Dictyostelium. Gene 465(1–2):1–8. doi:10.1016/j.gene.2010.06.010 S0378-1119(10)00259-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, Yu FH (2011) Too many roads not taken. Nature 470(7333):163–165. doi:10.1038/470163a

    CAS  PubMed  Google Scholar 

  • Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Madan Babu M, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435(7038):43–57

    Google Scholar 

  • Eichinger L, Rivero F (2006) Dictyostelium discoideum protocols. Methods in molecular biology Humana Press, Totowa

    Google Scholar 

  • Eickholt BJ, Towers GJ, Ryves WJ, Eikel D, Adley K, Ylinen LM, Chadborn NH, Harwood AJ, Nau H, Williams RS (2005) Effects of valproic acid derivatives on inositol trisphosphate depletion, teratogenicity, glycogen synthase kinase-3beta inhibition, and viral replication: a screening approach for new bipolar disorder drugs derived from the valproic acid core structure. Mol Pharmacol 67(5):1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci (Off J Soc Neurosci) 23(19):7311–7316

    CAS  Google Scholar 

  • Escalante R (2011) Dictyostelium as a model for human disease. Semin Cell Dev Biol 22(1):69. doi:10.1016/j.semcdb.2010.12.001

    Article  PubMed  Google Scholar 

  • Escalante R, Vicente JJ (2000) Dictyostelium discoideum: a model system for differentiation and patterning. Int J Dev Biol 44:819–835

    CAS  PubMed  Google Scholar 

  • Fernandez-Moreno MA, Farr CL, Kaguni LS, Garesse R (2007) Drosophila melanogaster as a model system to study mitochondrial biology. Methods Mol Biol 372:33–49

    Article  CAS  PubMed  Google Scholar 

  • Firtel R, Bonner J (1972) Characterization of the genome of the cellular slime mold Dictyostelium discoideum. J Mol Biol 66:339–361

    Article  CAS  PubMed  Google Scholar 

  • Firtel RA, Silan C, Ward TE, Howard P, Metz BA, Nellen W, Jacobson A (1985) Extrachromosomal replication of shuttle vectors in Dictyostelium discoideum. Mol Cell Biol 5:3241–3250

    CAS  PubMed  Google Scholar 

  • Francione L, Smith PK, Accari SL, Taylor PE, Bokko PB, Bozzaro S, Beech PL, Fisher PR (2009) Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. Dis Model Mech 2(9–10):479–489. doi:10.1242/dmm.003319

    Article  CAS  PubMed  Google Scholar 

  • Francione LM, Annesley SJ, Carilla-Latorre S, Escalante R, Fisher PR (2011) The Dictyostelium model for mitochondrial disease. Semin Cell Dev Biol 22(1):120–130. doi:10.1016/j.semcdb.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  • Francione LM, Fisher PR (2011) Heteroplasmic mitochondrial disease in Dictyostelium discoideum. Biochem Pharmacol 82(10):1510–1520. doi:10.1016/j.bcp.2011.07.071

    Article  CAS  PubMed  Google Scholar 

  • Gaudet P, Pilcher KE, Fey P, Chisholm RL (2007) Transformation of Dictyostelium discoideum with plasmid DNA. Nat Protoc 2(6):1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Gezelius K (1962) Growth of the cellular slime mold Dictyostelium discoideum on dead bacteria in liquid media. Physiologia Plantarum 15:587–592

    Article  Google Scholar 

  • Grasso D, Ropolo A, Lo Re A, Boggio V, Molejon MI, Iovanna JL, Gonzalez CD, Urrutia R, Vaccaro MI (2011) Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 286(10):8308–8324. doi:10.1074/jbc.M110.197301

    Google Scholar 

  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4):656–667. doi:10.1016/j.cell.2010.04.009 S0092-8674(10)00383-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255(22):10896–10901

    CAS  PubMed  Google Scholar 

  • Hardie DG (2011) Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr 93(4):891S–896S. doi:10.3945/ajcn.110.001925

    Article  CAS  PubMed  Google Scholar 

  • Heidel AJ, Lawal HM, Felder M, Schilde C, Helps NR, Tunggal B, Rivero F, John U, Schleicher M, Eichinger L, Platzer M, Noegel AA, Schaap P, Glockner G (2011) Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res 21(11):1882–1891. doi:10.1101/gr.121137.111

    Article  CAS  PubMed  Google Scholar 

  • Hirth KP, Edwards CA, Firtel RA (1982) A DNA-mediated transformation system for Dictyostelium discoideum. Proc Natl Acad Sci USA 79:7356–7360

    Article  CAS  PubMed  Google Scholar 

  • Hoeller O, Kay RR (2007) Chemotaxis in the absence of PIP3 gradients. Curr Biol 17(9):813–817

    Article  CAS  PubMed  Google Scholar 

  • Hori H, Osawa S, Iwabuchi M (1980) The nucleotide sequence of 5S rRNA from a cellular slime mold Dictyostelium discoideum. Nucl Acids Res 8:5535–5539

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Klionsky DJ (2010) Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol 21(7):664–670. doi:10.1016/j.semcdb.2010.03.009 S1084-9521(10)00071-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, Reiz B, Cordwell SJ, Whittal R, Schild S, Feldman MF (2012) Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 8(6):e1002758. doi:10.1371/journal.ppat.1002758

    Article  CAS  PubMed  Google Scholar 

  • Janjua HA, Segata N, Bernabo P, Tamburini S, Ellen A, Jousson O (2012) Clinical populations of Pseudomonas aeruginosa isolated from acute infections show a wide virulence range partially correlated with population structure and virulence gene expression. Microbiology 158(Pt 8):2089–2098. doi:10.1099/mic.0.056689-0

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44(1):1–8. doi:10.1016/j.cyto.2008.06.017

    Article  CAS  PubMed  Google Scholar 

  • Jones NC, Trainor PA (2005) Role of morphogens in neural crest cell determination. J Neurobiol 64(4):388–404. doi:10.1002/neu.20162

    Google Scholar 

  • Kawata T (2011) STAT signaling in Dictyostelium development. Dev Growth Differ 53(4):548–557. doi:10.1111/j.1440-169X.2010.01243.x

    Article  CAS  PubMed  Google Scholar 

  • Ketter TA (2010) Diagnostic features, prevalence, and impact of bipolar disorder. J Clin Psychiatry 71(6):e14. doi:10.4088/JCP.8125tx11c

    Article  PubMed  Google Scholar 

  • Kim DH, Davis RC, Furukawa R, Fechheimer M (2009) Autophagy contributes to degradation of Hirano bodies. Autophagy 5(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • King J, Keim M, Teo R, Weening KE, Kapur M, McQuillan K, Ryves J, Rogers B, Dalton E, Williams RS, Harwood AJ (2010) Genetic control of lithium sensitivity and regulation of inositol biosynthetic genes. PLoS ONE 5(6):e11151. doi:10.1371/journal.pone.0011151

    Article  PubMed  CAS  Google Scholar 

  • King JS (2012) Autophagy across the eukaryotes: Is S. cerevisiae the odd one out? Autophagy 8(7):1159–1162

    Article  CAS  PubMed  Google Scholar 

  • King JS, Insall RH (2009) Chemotaxis: finding the way forward with Dictyostelium. Trends Cell Biol 19(10):523–530. doi:10.1016/j.tcb.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  • King JS, Teo R, Ryves J, Reddy JV, Peters O, Orabi B, Hoeller O, Williams RS, Harwood AJ (2009) The mood stabiliser lithium suppresses PIP3 signalling in Dictyostelium and human cells. Dis Model Mech 2(5–6):306–312. doi:10.1242/dmm.001271

    Article  CAS  PubMed  Google Scholar 

  • King JS, Veltman DM, Insall RH (2011) The induction of autophagy by mechanical stress. Autophagy 7(12):1490–1499

    Article  CAS  PubMed  Google Scholar 

  • Kipnis E, Sawa T, Wiener-Kronish J (2006) Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 36(2):78–91

    Article  CAS  PubMed  Google Scholar 

  • Koga H, Cuervo AM (2011) Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol Dis 43(1):29–37. doi:10.1016/j.nbd.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  • Kole TP, Tseng Y, Jiang I, Katz JL, Wirtz D (2005) Intracellular mechanics of migrating fibroblasts. Mol Biol Cell 16(1):328–338. doi:10.1091/mbc.E04-06-0485

    Article  CAS  PubMed  Google Scholar 

  • Kompare M, Rizzo WB (2008) Mitochondrial fatty-acid oxidation disorders. Semin Pediatr Neurol 15(3):140–149. doi:10.1016/j.spen.2008.05.008

    Article  PubMed  Google Scholar 

  • Konijn TM, Barkley DS, Chang YY, Bonner JT (1968) Cyclic AMP: a naturally occurring acrasin in the cellular slime molds. Am Nat 102:225–233

    Article  CAS  Google Scholar 

  • Kotsifas M, Barth C, De Lozanne A, Lay ST, Fisher PR (2002) Chaperonin 60 and mitochondrial disease in Dictyostelium. J Muscle Res Cell Motil 23:839–852

    Article  CAS  PubMed  Google Scholar 

  • Kuspa A (2006) Restriction enzyme-mediated integration (REMI) mutagenesis. Methods Mol Biol 346:201–209

    CAS  PubMed  Google Scholar 

  • Kuspa A, Loomis WF (1992) Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci USA 89:8803–8807

    Article  CAS  PubMed  Google Scholar 

  • Langenick J, Araki T, Yamada Y, Williams JG (2008) A Dictyostelium homologue of the metazoan Cbl proteins regulates STAT signalling. J Cell Sci 121(Pt 21):3524–3530. doi:10.1242/jcs.036798

    Article  CAS  PubMed  Google Scholar 

  • Leber T (1888) Ăśber die Entstehung der EntzĂĽndung und die Wirkung der entzĂĽndungserregenden Schädlichkeiten. Fortschr Med 6:460–464

    Google Scholar 

  • Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Deziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7(10):R90

    Article  PubMed  CAS  Google Scholar 

  • Lelong E, Marchetti A, Simon M, Burns JL, van Delden C, Kohler T, Cosson P (2011) Evolution of Pseudomonas aeruginosa virulence in infected patients revealed in a Dictyostelium discoideum host model. Clin Microbiol Infect (Off Publ Eur Soc Clin Microbiol Infect Dis) 17(9):1415–1420. doi:10.1111/j.1469-0691.2010.03431.x

    CAS  Google Scholar 

  • Levi S, Polyakov M, Egelhoff TT (2000) Green fluorescent protein and epitope tag fusion vectors for Dictyostelium discoideum. Plasmid 44:231–238

    Article  CAS  PubMed  Google Scholar 

  • Li G, Alexander H, Schneider N, Alexander S (2000) Molecular basis for resistance to the anticancer drug cisplatin in Dictyostelium. Microbiology 146:2219–2227

    CAS  PubMed  Google Scholar 

  • Li GC, Foote C, Alexander S, Alexander H (2001) Sphingosine-1-phosphate lyase has a central role in the development of Dictyostelium discoideum. Development 128:3473–3483

    CAS  PubMed  Google Scholar 

  • Lima WC, Lelong E, Cosson P (2011) What can Dictyostelium bring to the study of Pseudomonas infections? Semin Cell Dev Biol 22(1):77–81. doi:10.1016/j.semcdb.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  • Linares JF, Moreno R, Fajardo A, Martinez-Solano L, Escalante R, Rojo F, Martinez JL (2010) The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ Microbiol 12(12):3196–3212. doi:10.1111/j.1462-2920.2010.02292.x EMI2292 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Loomis W, Sussman M (1966) Commitment to the synthesis of a specific enzyme during cellular slime mold development. J Mol Biol 22:401–404

    Article  CAS  PubMed  Google Scholar 

  • Loomis WF (1969a) Acetyl-glucosaminidase, an early enzyme in the development of Dictyostelium discoideum. J Bacteriol 97:1149–1154

    CAS  PubMed  Google Scholar 

  • Loomis WF (1969b) Developmental regulation of alkaline phosphatase in Dictyostelium discoideum. J Bacteriol 100:417–422

    CAS  PubMed  Google Scholar 

  • Loomis WF (1970) Developmental regulation of alpha-mannosidase in Dictyostelium discoideum. J Bacteriol 103:375–381

    CAS  PubMed  Google Scholar 

  • Loomis WF (1971) Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Exp Cell Res 64:484–486

    Article  CAS  PubMed  Google Scholar 

  • Loomis WF, White S, Dimond RL (1976) A sequence of dependent stages in the development of Dictyostelium discoideum. Dev Biol 53:171–177

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43(9):813–819. doi:10.1016/j.exger.2008.06.014

    Article  CAS  PubMed  Google Scholar 

  • Ludtmann MH, Boeckeler K, Williams RS (2011) Molecular pharmacology in a simple model system: implicating MAP kinase and phosphoinositide signalling in bipolar disorder. Semin Cell Dev Biol 22(1):105–113. doi:10.1016/j.semcdb.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  • Maselli AG, Davis R, Furukawa R, Fechheimer M (2002) Formation of Hirano bodies in Dictyostelium and mammalian cells induced by expression of a modified form of an actin-crosslinking protein. J Cell Sci 115:1939–1949

    CAS  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74(2):560–564

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon (1946) Chemotaxis in leukocytes. Physiol Rev 26(3):319–336

    Google Scholar 

  • McMains VC, Myre M, Kreppel L, Kimmel AR (2010) Dictyostelium possesses highly diverged presenilin/gamma-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/gamma-secretase complex. Dis Model Mech 3(9–10):581–594. doi:10.1242/dmm.004457 dmm.004457 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Meima ME, Weening KE, Schaap P (2007) Vectors for expression of proteins with single or combinatorial fluorescent protein and tandem affinity purification tags in Dictyostelium. Protein Expr Purif 53(2):283–288

    Article  CAS  PubMed  Google Scholar 

  • Meyer I, Kuhnert O, Graf R (2011) Functional analyses of lissencephaly-related proteins in Dictyostelium. Semin Cell Dev Biol 22(1):89–96. doi:10.1016/j.semcdb.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  • Mijaljica D, Prescott M, Devenish RJ (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7(7):673–682

    Article  CAS  PubMed  Google Scholar 

  • Morales G, Wiehlmann L, Gudowius P, van Delden C, Tummler B, Martinez JL, Rojo F (2004) Structure of Pseudomonas aeruginosa populations analyzed by single nucleotide polymorphism and pulsed-field gel electrophoresis genotyping. J Bacteriol 186(13):4228–4237. doi:10.1128/JB.186.13.4228-4237.2004

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Yamaguchi H, Amagai A, Maeda Y (2005) Involvement of the TRAP-1 homologue, Dd-TRAP1, in spore differentiation during Dictyostelium development. Exp Cell Res 303(2):425–431

    Article  CAS  PubMed  Google Scholar 

  • Mostowy S, Sancho-Shimizu V, Hamon MA, Simeone R, Brosch R, Johansen T, Cossart P (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286(30):26987–26995. doi:10.1074/jbc.M111.223610

    Article  CAS  PubMed  Google Scholar 

  • Myre MA, Lumsden AL, Thompson MN, Wasco W, Macdonald ME, Gusella JF (2011) Deficiency of huntingtin has pleiotropic effects in the social amoeba Dictyostelium discoideum. PLoS Genet 7(4):e1002052. doi:10.1371/journal.pgen.1002052

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki A, Uyeda TQ (2008) Screening of genes involved in cell migration in Dictyostelium. Exp Cell Res 314(5):1136–1146. doi:10.1016/j.yexcr.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  • Newell PC, Ellingson JS, Sussman M (1969) Synchrony of enzyme accumulation in a population of differentiating slime mold cells. Biochim Biophys Acta 177:610–614

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HN, Raisley B, Hadwiger JA (2010) MAP kinases have different functions in Dictyostelium G protein-mediated signaling. Cell Signal 22(5):836–847. doi:10.1016/j.cellsig.2010.01.008 S0898-6568(10)00014-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH (2003) Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 278(20):17636–17645. doi:10.1074/jbc.M212467200

    Article  CAS  PubMed  Google Scholar 

  • Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH (2004) Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J Biol Chem 279(15):15621–15629. doi:10.1074/jbc.M311139200

    Article  CAS  PubMed  Google Scholar 

  • Parent CA (2004) Making all the right moves: chemotaxis in neutrophils and Dictyostelium. Curr Opin Cell Biol 16:4–13

    Google Scholar 

  • Peffley DM, Sogin ML (1981) A putative tRNA gene cloned from Dictyostelium discoideum: its nucleotide sequence and association with repetitive deoxyribonucleic acid. Biochem 20:4015–4021

    Article  CAS  Google Scholar 

  • Peracino B, Balest A, Bozzaro S (2010) Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 123(Pt 23):4039–4051. doi:10.1242/jcs.072124 jcs.072124 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Peracino B, Buracco S, Bozzaro S (2012) The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. J Cell Sci 126:301–311. doi:10.1242/jcs.116210

    PubMed  Google Scholar 

  • Peracino B, Wagner C, Balest A, Balbo A, Pergolizzi B, Noegel AA, Steinert M, Bozzaro S (2006) Function and mechanism of action of Dictyostelium Nramp1 (Slc11a1) in bacterial infection. Traffic 7(1):22–38

    Article  CAS  PubMed  Google Scholar 

  • Poole S, Firtel RA, Lamar E, Rowekamp W (1981) Sequence and expression of the discoidin I gene family in Dictyostelium discoideum. J Mol Biol 153:273–289

    Article  CAS  PubMed  Google Scholar 

  • Price CT, Al-Khodor S, Al-Quadan T, Santic M, Habyarimana F, Kalia A, Kwaik YA (2009) Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 5(12):e1000704. doi:10.1371/journal.ppat.1000704

    Article  PubMed  CAS  Google Scholar 

  • Pukatzki S, Kessin RH, Mekalanos JJ (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci USA 99:3159–3164

    Article  CAS  PubMed  Google Scholar 

  • Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232(2):1065–1076

    CAS  PubMed  Google Scholar 

  • Raper KB (1935) Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. J Agr Res 50:135–147

    Google Scholar 

  • Raper KB (1936) The influence of the bacterial associate and of the medium upon the growth and development of Dictyostelium discoideum. Ph.D., Harvard University, Cambridge

    Google Scholar 

  • Raper KB (1939) Influence of culture conditions upon the growth and development of Dictyostelium discoideum. J Agr Res 58:157–198

    CAS  Google Scholar 

  • Raper KB (1940a) The communal nature of the fruiting process in the Acrasieae. Am J Bot 27:436–448

    Article  Google Scholar 

  • Raper KB (1940b) Pseudoplasmodium formation and organization in Dictyostelium discoideum. J Elisha Mitchell Sci Soc 56:241–282

    Google Scholar 

  • Raper KB, Smith NR (1939) The growth of Dictyostelium discoideum on pathogenic bacteria. J Bacteriol 38:431–444

    CAS  PubMed  Google Scholar 

  • Reggiori F (2006) 1. Membrane origin for autophagy. Curr Top Dev Biol 74:1–30. doi:10.1016/S0070-2153(06)74001-7

    Article  CAS  PubMed  Google Scholar 

  • Rehberg M, Kleylein-Sohn J, Faix J, Ho TH, Schulz I, Graf R (2005) Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Mol Biol Cell 16(6):2759–2771

    Article  CAS  PubMed  Google Scholar 

  • Romeralo M, Escalante R, Baldauf SL (2011) Evolution and diversity of dictyostelid social Amoebae. Protist 163:327–343. doi:10.1016/j.protis.2011.09.004

    PubMed  Google Scholar 

  • Ropolo A, Grasso D, Pardo R, Sacchetti ML, Archange C, Lo Re A, Seux M, Nowak J, Gonzalez CD, Iovanna JL, Vaccaro MI (2007) The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 282(51):37124–37133. doi:10.1074/jbc.M706956200

    Google Scholar 

  • Roth R, Ashworth J, Sussman M (1968) Periods of genetic transcription required for the synthesis of three enzymes during cellular slime mold development. Proc Natl Acad Sci USA 59:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11(8):573–587. doi:10.1038/nrc3078

    Article  CAS  PubMed  Google Scholar 

  • Santos RX, Correia SC, Carvalho C, Cardoso S, Santos MS, Moreira PI (2011) Mitophagy in neurodegeneration: an opportunity for therapy? Curr Drug Targ 12(6):790–799

    Article  CAS  Google Scholar 

  • Sanz A, Pamplona R, Barja G (2006) Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal 8(3–4):582–599. doi:10.1089/ars.2006.8.582

    Article  CAS  PubMed  Google Scholar 

  • Satrustegui J, Pardo B, Del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87(1):29–67. doi:10.1152/physrev.00005.2006

    Article  CAS  PubMed  Google Scholar 

  • Schmauch C, Claussner S, Zoltzer H, Maniak M (2009) Targeting the actin-binding protein VASP to late endosomes induces the formation of giant actin aggregates. Eur J Cell Biol 88(7):385–396. doi:10.1016/j.ejcb.2009.02.185

    Article  CAS  PubMed  Google Scholar 

  • Shaulsky G, Escalante R, Loomis WF (1996) Developmental signal transduction pathways uncovered by genetic suppressors. Proc Natl Acad Sci USA 93(26):15260–15265

    Article  CAS  PubMed  Google Scholar 

  • Soares JC, Dippold CS, Mallinger AG (1997) Platelet membrane phosphatidylinositol-4,5-bisphosphate alterations in bipolar disorder—evidence from a single case study. Psychiatry Res 69(2–3):197–202

    Article  CAS  PubMed  Google Scholar 

  • Soares JC, Mallinger AG, Dippold CS, Forster Wells K, Frank E, Kupfer DJ (2000) Effects of lithium on platelet membrane phosphoinositides in bipolar disorder patients: a pilot study. Psychopharmacology (Berl) 149(1):12–16

    Google Scholar 

  • Soler-Lopez M, Petosa C, Fukuzawa M, Ravelli R, Williams JG, Muller CW (2004) Structure of an activated Dictyostelium STAT in its DNA-unbound form. Mol Cell 13:791–804

    Article  CAS  PubMed  Google Scholar 

  • Sonneborn DR, White GJ, Sussman M (1963) A mutation affecting both rate and pattern of morphogenesis in Dictyostelium discoideum. Dev Biol 7:79–93

    Article  Google Scholar 

  • Sperandio D, Decoin V, Latour X, Mijouin L, Hillion M, Feuilloley MG, Orange N, Merieau A (2012) Virulence of the Pseudomonas fluorescens clinical strain MFN1032 towards Dictyostelium discoideum and macrophages in relation with type III secretion system. BMC Microbiol 12(1):223. doi:10.1186/1471-2180-12-223

    Article  CAS  PubMed  Google Scholar 

  • Steinert M (2011) Pathogen–host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. Semin Cell Dev Biol 22(1):70–76. doi:10.1016/j.semcdb.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  • Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV (2011) Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 12(2):R20. doi:10.1186/gb-2011-12-2-r20

    Article  CAS  PubMed  Google Scholar 

  • Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590. doi:10.1101/gad.1658508

    Article  CAS  PubMed  Google Scholar 

  • Sussman M (1954) Synergistic and antagonistic interactions between morphogenetically deficient variants of the slime mould Dictyostelium discoideum. J Gen Microbiol 10:110–120

    Article  CAS  PubMed  Google Scholar 

  • Sussman M (1961) Cultivation and serial transfer of the slime mold Dictyostelium discoideum in liquid nutrient medium. J Gen Microbiol 25:375–378

    Article  Google Scholar 

  • Sussman M (1965) Temporal, spatial, and quantitative control of enzyme activity during slime mold cytodifferentiation. Brookhaven Symp Biol 18:66–76

    Google Scholar 

  • Sussman R, Rayner EP (1971) Physical characterization of deoxyribonucleic acids in Dictyostelium discoideum. Arch Biochem Biophys 144:127–137

    Article  CAS  PubMed  Google Scholar 

  • Sussman R, Sussman M (1967) Cultivation of Dictyostelium discoideum in axenic culture. Biochem Biophys Res Commun 29:53–55

    Article  CAS  PubMed  Google Scholar 

  • Sussman RR, Sussman M (1953) Cellular differentiation in Dictyosteliaceae: heritable modifications of the developmental pattern. Ann N Y Acad Sci 56:949–960

    Article  CAS  PubMed  Google Scholar 

  • Swaney KF, Huang CH, Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39:265–289. doi:10.1146/annurev.biophys.093008.131228

    Article  CAS  PubMed  Google Scholar 

  • Torija P, Robles A, Escalante R (2006a) Optimization of a large-scale gene disruption protocol in Dictyostelium and analysis of conserved genes of unknown function. BMC Microbiol 6:75

    Article  PubMed  CAS  Google Scholar 

  • Torija P, Vicente JJ, Rodrigues TB, Robles A, Cerdan S, Sastre L, Calvo RM, Escalante R (2006b) Functional genomics in Dictyostelium: MidA, a new conserved protein, is required for mitochondrial function and development. J Cell Sci 119(Pt 6):1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA (2005) Specification of neural crest cell formation and migration in mouse embryos. Semin Cell Dev Biol 16(6):683–693. doi:10.1016/j.semcdb.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  • Tung SM, Unal C, Ley A, Pena C, Tunggal B, Noegel AA, Krut O, Steinert M, Eichinger L (2010) Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 12:765–780. doi:10.1111/j.1462-5822.2010.01432.x

    Article  CAS  PubMed  Google Scholar 

  • Ura S, Pollitt AY, Veltman DM, Morrice NA, Machesky LM, Insall RH (2012) Pseudopod growth and evolution during cell movement is controlled through SCAR/WAVE dephosphorylation. Curr Biol 22(7):553–561. doi:10.1016/j.cub.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  • Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4(4):551–560

    Article  PubMed  Google Scholar 

  • Veltman DM, Akar G, Bosgraaf L, Van Haastert PJ (2009a) A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum. Plasmid 61(2):110–118. doi:10.1016/j.plasmid.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  • Veltman DM, Keizer-Gunnink I, Haastert PJ (2009b) An extrachromosomal, inducible expression system for Dictyostelium discoideum. Plasmid 61(2):119–125. doi:10.1016/j.plasmid.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  • Veltman DM, King JS, Machesky LM, Insall RH (2012) SCAR knockouts in Dictyostelium: WASP assumes SCAR’s position and upstream regulators in pseudopods. J Cell Biol 198(4):501–508. doi:10.1083/jcb.201205058

    Article  CAS  PubMed  Google Scholar 

  • Vingtdeux V, Davies P, Dickson DW, Marambaud P (2011) AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 121(3):337–349. doi:10.1007/s00401-010-0759-x

    Article  CAS  PubMed  Google Scholar 

  • Vuillemin P (1903) Une Acrasiee bacteriophage. CR Acad Sc Paris 137:387–389

    Google Scholar 

  • Walz A, Peveri P, Aschauer H, Baggiolini M (1987) Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 149(2):755–761

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen CL, Iijima M (2011a) Signaling mechanisms for chemotaxis. Dev Growth Differ 53(4):495–502. doi:10.1111/j.1440-169X.2011.01265.x

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Levy DE (2006) C. elegans STAT: evolution of a regulatory switch. Faseb J 20(10):1641–1652

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Steimle PA, Ren Y, Ross CA, Robinson DN, Egelhoff TT, Sesaki H, Iijima M (2011b) Dictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation. Mol Biol Cell 22(13):2270–2281. doi:10.1091/mbc.E10-11-0926

    Article  CAS  PubMed  Google Scholar 

  • Wessels D, Srikantha T, Yi S, Kuhl S, Aravind L, Soll DR (2006) The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod of Dictyostelium amoebae during chemotaxis. J Cell Sci 119(Pt 2):370–379

    Article  CAS  PubMed  Google Scholar 

  • Wiegand S, Kruse J, Gronemann S, Hammann C (2011) Efficient generation of gene knockout plasmids for Dictyostelium discoideum using one-step cloning. Genomics 97(5):321–325. doi:10.1016/j.ygeno.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  • Williams JG (2003) The STAT proteins of Dictyostelium. In: Sehgal PB, Levy DE, Hirano T (eds) Signal transducers and activators of transcription (STATs) Activation and biology. Kluwer Academic Publishers, Boston, pp 105–121

    Chapter  Google Scholar 

  • Williams RSB, Cheng LL, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417:292–295

    Article  CAS  PubMed  Google Scholar 

  • Williams RSB, Eames M, Ryves WJ, Viggars J, Harwood AJ (1999) Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate. EMBO J 18:2734–2745

    Article  CAS  PubMed  Google Scholar 

  • Winslow AR, Rubinsztein DC (2011) The Parkinson disease protein alpha-synuclein inhibits autophagy. Autophagy 7(4):429–431

    Article  PubMed  Google Scholar 

  • Witke W, Nellen W, Noegel A (1987) Homologous recombination in the Dictyostelium alpha-actinin gene leads to an altered mRNA and lack of the protein. EMBO J 6:4143–4148

    CAS  PubMed  Google Scholar 

  • Wong CC, Traynor D, Basse N, Kay RR, Warren AJ (2011) Defective ribosome assembly in Shwachman-Diamond syndrome. Blood 118(16):4305–4312. doi:10.1182/blood-2011-06-353938

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Morales CR, Lavandero S, Hill JA (2011) Tuning flux: autophagy as a target of heart disease therapy. Curr Opin Cardiol 26(3):216–222. doi:10.1097/HCO.0b013e328345980a

    Article  CAS  PubMed  Google Scholar 

  • Xilouri M, Stefanis L (2011) Autophagic pathways in Parkinson disease and related disorders. Expert Rev Mol Med 13:e8. doi:10.1017/S1462399411001803

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Muller-Taubenberger A, Adley KE, Pawolleck N, Lee VW, Wiedemann C, Sihra TS, Maniak M, Jin T, Williams RS (2007) Attenuation of phospholipid signaling provides a novel mechanism for the action of valproic acid. Eukaryot Cell 6(6):899–906

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22(2):124–131. doi:10.1016/j.ceb.2009.11.014 S0955-0674(09)00228-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yang ZJ, Chee CE, Huang S, Sinicrope F (2011) Autophagy modulation for cancer therapy. Cancer Biol Ther 11(2):169–176. doi:10.4161/cbt.11.2.14663

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, Leonard EJ (1987) Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci USA 84(24):9233–9237

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Su H, Ranek MJ, Wang X (2011) Autophagy and p62 in cardiac proteinopathy. Circ Res 109(3):296–308. doi:10.1161/CIRCRESAHA.111.244707

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants BFU2009-09050 and BFU2012-32536 from the Spanish Ministerio de Ciencia e Innovación. Thanks to Dr. Ron Hartong for linguistic assistance and suggestions. A.M. is supported by a FPI fellowship from the Spanish Government. S.M.B. has been supported by "Obra Social Caja de Burgos y Fundación Gutiérrez Manrique”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Escalante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muñoz-Braceras, S., Mesquita, A., Escalante, R. (2013). Dictyostelium discoideum as a Model in Biomedical Research. In: Romeralo, M., Baldauf, S., Escalante, R. (eds) Dictyostelids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38487-5_1

Download citation

Publish with us

Policies and ethics