Skip to main content

Molecular Mechanisms Involved in Lead Uptake, Toxicity and Detoxification in Higher Plants

  • Chapter
  • First Online:
Heavy Metal Stress in Plants

Abstract

Lead (Pb) is one of the most useful metals, and has contaminated most of the ecosystems. It has been known to influence various morphological, physiological and biochemical processes in plants. Higher plants have evolved sophisticated internal detoxification mechanisms, to deal with metal toxicity, that include selective metal uptake, excretion, chelation by specific ligands and compartmentalization. Despite these detoxification systems, Pb is able to induce the production of reactive oxygen species (ROS) which can cause harmful effects on vital constituents of plant cells: protein oxidation, lipid peroxidation, enzyme inactivation or DNA damages. Unlike other metals, little is known about the mechanisms involved in Pb uptake, toxicity, oxidative stress generation and detoxification in plants. This chapter reviews the recent understanding of physiological and biochemical mechanisms involved in Pb uptake and translocation into plants. It also provides a broad overview of the most important mechanisms of Pb toxicity and tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    PubMed  CAS  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    PubMed  CAS  Google Scholar 

  • Atici Ouml, Aar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plantarum 49:215–222

    CAS  Google Scholar 

  • Bah AM, Sun H, Chen F, Zhou J, Dai H, Zhang G, Wu F (2010) Comparative proteomic analysis of Typha angustifolia leaf under chromium, cadmium and lead stress. J Hazard Mater 184:191–203

    PubMed  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nut 13:1–37

    CAS  Google Scholar 

  • Bazzaz FA, Carlson RW, Rolfe GL (1975) Inhibition of corn and sunflower photosynthesis by lead. Physiol Plantarum 34:326–329

    CAS  Google Scholar 

  • Bittell JE, Koeppe DE, Miller RJ (1974) Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions. Physiol Plantarum 30:226–230

    CAS  Google Scholar 

  • Brunet Jl, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77:1113–1120

    PubMed  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Phys 46:95–122

    CAS  Google Scholar 

  • Cannata MG, Carvalho R, Bertoli AC, Bastos ARR, Carvalho JG, Freitas MP, Augusto AS (2013) Effects of lead on the content, accumulation, and translocation of nutrients in bean plant cultivated in nutritive solution. Commun Soil Sci Plant Anal 44:939–951

    CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Ozay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    CAS  Google Scholar 

  • Clemens S (2006a) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    PubMed  CAS  Google Scholar 

  • Clemens S (2006b) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    PubMed  CAS  Google Scholar 

  • Das S, Sen M, Saha C, Chakraborty D, Das A, Banerjee M, Seal A (2012) Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique. Planta 234:139–156

    Google Scholar 

  • Dong W, Lv H, Xia G, Wang M (2012) Does diacylglycerol serve as a signaling molecule in plants? Plant Signal Behav 7:472–475

    PubMed  CAS  Google Scholar 

  • Drazkiewicz M (1994) Chlorophyll-occurrence, functions, mechanism of action, effects of internal and external factors. Photosynthetica 30:321–331

    CAS  Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level. In: Schuurman G, Markert B (eds) Ecotoxicology. Wiley, New York, pp 587–620

    Google Scholar 

  • Eun SO, Shik Youn H, Lee Y (2000) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:357–365

    CAS  Google Scholar 

  • Fernandez LR, Vandenbussche G, Roosens N, Govaerts C, Goormaghtigh E, Verbruggen N (2012) Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens. BBA—Proteins Proteom 1824:1016–1023

    CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physio 29:511–566

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS  Google Scholar 

  • Freisinger E (2008) Plant MTs-long neglected members of the metallothionein superfamily. Dalton Trans 0:6663–6675

    CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Oise, huleau P, Agnel JP, Blein J-P, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Google Scholar 

  • Gastaldo J, Viau M, Bencokova Z, Joubert A, Charvet AM, Balosso J, Foray N (2007) Lead contamination results in late and slowly repairable DNA double-strand breaks and impacts upon the ATM-dependent signaling pathways. Toxicol Lett 173:201–214

    PubMed  CAS  Google Scholar 

  • Ghnaya T, Zaier H, Baioui R, Sghaier S, Lucchini G, Sacchi GA, Lutts S, Abdelly C (2013) Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere 90:1449–1454

    PubMed  CAS  Google Scholar 

  • Gichner T, Znidar I, Száková J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mut Res-Gen Tox En 652:186–190

    CAS  Google Scholar 

  • Glinski J, Lipiec J (1990) In Soil physical conditions and plant roots. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Glyan’ko AK, Ischenko AA (2010) Structural and functional characteristics of plant NADPH oxidase: a review. Appl Biochem Micro 46:463–471

    Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. P Natl Acad Sci 100:10118–10123

    CAS  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544

    PubMed  CAS  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    PubMed  CAS  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut 20(4):2150–2161

    Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    PubMed  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MR, Rossato LV, Huang HG, Srivastava S, Yang XE (2011) Lead induced responses of Pfaffia glomerata, an economically important Brazilian medicinal plant, under in vitro culture conditions. Bull Environ Contam Toxicol 86:272–277

    PubMed  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    PubMed  CAS  Google Scholar 

  • Gupta M, Rai UN, Tripathi RD, Chandra P (1995) Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (l. f.) Royle. Chemosphere 30:2011–2020

    CAS  Google Scholar 

  • Habermann E, Crowell K, Janicki P (1983) Lead and other metals can substitute for Ca2+ in calmodulin. Arch Toxicol 54:61–70

    PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    PubMed  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    PubMed  CAS  Google Scholar 

  • Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158

    CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs—a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    PubMed  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    PubMed  CAS  Google Scholar 

  • Huang GY, Wang YS, Ying GG (2011) Cadmium-inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorrhiza), its encoding protein shows metal-binding ability. J Exp Mar Biol Ecol 405:128–132

    CAS  Google Scholar 

  • Huang H, Gupta DK, Tian S, Yang XE, Li T (2012) Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii. Environ Sci Pollut Res 19:1640–1651

    CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    CAS  Google Scholar 

  • Huang TL, Huang HJ (2008) ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere 71:1377–1385

    PubMed  CAS  Google Scholar 

  • Inoue H, Fukuoka D, Tatai Y, Kamachi H, Hayatsu M, Ono M, Suzuki S (2013) Properties of lead deposits in cell walls of radish (Raphanus sativus) roots. J Plant Res 126:51–61

    PubMed  CAS  Google Scholar 

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147:806–816

    PubMed  CAS  Google Scholar 

  • Jana S, Choudhuri M (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90:477–484

    CAS  Google Scholar 

  • Jarvis MD, Leung DWM (2001) Chelated lead transport in Chamaecytisus proliferus (L.f.) link ssp. proliferus var. palmensis (H. Christ): an ultrastructural study. Plant Sci 161:433–441

    CAS  Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40

    PubMed  Google Scholar 

  • Kaur G, Singh H, Batish D, Kohli R (2012) A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+). Protoplasma 249:1091–1100

    PubMed  CAS  Google Scholar 

  • Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932

    PubMed  CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    PubMed  CAS  Google Scholar 

  • Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plant 116:368–372

    CAS  Google Scholar 

  • Kohler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    PubMed  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Blamey FPC, Auchterlonie GJ, Guo YN, Menzies NW (2008) Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana). Environ Sci Technol 42:4595–4599

    PubMed  CAS  Google Scholar 

  • Kosobrukhov A, Knyazeva I, Mudrik V (2004) Plantago major plants responses to increase content of lead in soil: growth and photosynthesis. Plant Growth Regul 42:145–151

    CAS  Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res-Fund Mol Med 570:149–161

    CAS  Google Scholar 

  • Kromer S (1995) Respiration during Photosynthesis. Annu Rev Plant Phys 46:45–70

    Google Scholar 

  • Krupa Z, Siedlecka A, Skórzynska-Polit E, Maksymiec W (2002) Heavy metal interactions with plant nutrients. In: M.N.V. Prasad KS (ed.) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, The Netherlands, pp. 287–301

    Google Scholar 

  • Krzeslowska M, Lenartowska M, Samardakiewicz Sa, Bilski H, Wozny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable - A remobilization can occur. Environ Pollut 158:325–338

    Google Scholar 

  • Krzeslowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51

    CAS  Google Scholar 

  • Lane SD, Martin ES (1977) A histochemical investigation of lead uptake in Raphanus sativus. New Phytol 79:281–286

    CAS  Google Scholar 

  • Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836

    PubMed  CAS  Google Scholar 

  • Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–761

    PubMed  CAS  Google Scholar 

  • Liu T, Liu S, Guan H, Ma L, Chen Z, Gu H, Qu LJ (2009) Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ Exp Bot 67:377–386

    CAS  Google Scholar 

  • Malecka A, Derba-Maceluch M, Kaczorowska K, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: mitochondrial and peroxisomal level. Acta Physiol Plant 31:1065–1075

    CAS  Google Scholar 

  • Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637

    Google Scholar 

  • Malone C, Koeppe DE, Miller RJ (1974) Localization of lead accumulated by corn plants. Plant Physiol 53:388–394

    PubMed  CAS  Google Scholar 

  • Marmiroli M, Antonioli G, Maestri E, Marmiroli N (2005) Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of Pb: an X-ray spectroscopy-based analysis. Environ Pollut 134:217–227

    PubMed  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    PubMed  CAS  Google Scholar 

  • Mika A, Minibayeva F, Beckett R, Lüthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3:173–193

    CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    PubMed  CAS  Google Scholar 

  • Moon G, Clough B, Peterson C, Allaway W (1986) Apoplastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. roots revealed by fluorescent tracer dyes. Aust J Plant Physiol 13:637–648

    CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    PubMed  CAS  Google Scholar 

  • Olmos E, Martinez-Solano JR, Piqueras A, Hellin E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    PubMed  CAS  Google Scholar 

  • Otte ML, Rozema J, Koster L, Haarsma MS, Broekman RA (1987) The iron-plaque on the roots of saltmarsh plants: a barrier to heavy metal uptake? In: Lindberg SE, Hutchinson TC (eds) International conference heavy metals in the environment. CEP Consultants, Edinburgh

    Google Scholar 

  • Park J, Gu Y, Lee Y, Yang Z, Lee Y (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134:129–136

    PubMed  CAS  Google Scholar 

  • Park J, Song W-Y, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    PubMed  CAS  Google Scholar 

  • Parys E, Romanowska E, Siedlecka M, Poskuta J (1998) The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. Acta Physiol Plant 20:313–322

    CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    PubMed  CAS  Google Scholar 

  • Pinelli E, Cambon C, Tronchere H, Chap H, Teissie J, Pipy B (1994) Ca2+-Dependent activation of phospholipases C and D from mouse peritoneal macrophages by a selective trigger of Ca2+ influx, γ-Hexachlorocyclohexane. Biochem Bioph Res Co 199:699–705

    CAS  Google Scholar 

  • Pirslova B, Kuna R, Libantova J, Moravcikova J, Matusikova I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38:3437–3446

    Google Scholar 

  • Poskuta J, Parys E, Romanowaska E (1996) Toxicity of lead to photosynthesis, accumulation of chlorophyll, respiration and growth of Chlorella pyrenoidosa. Protective role of dark respiration. Acta physiol plant 18:165–171

    CAS  Google Scholar 

  • Poskuta JW, Parys E, Romanowska E, Gajdzis-Gujdan H, Wróblewska B (1988) The effects of lead on photosynthesis, 14C distribution among photoassimilates and transpiration of maize seedlings. Acta Soc Bot Pol 57:149–155

    CAS  Google Scholar 

  • Pourrut B (2008) Implication du stress oxydatif dans la toxicité du plomb sur une plante modèle, Vicia faba. PhD thesis. University of Toulouse, Toulouse

    Google Scholar 

  • Pourrut B, Jean S, Silvestre J, Pinelli E (2011a) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mut Res-Gen Tox En 726:123–128

    CAS  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579

    PubMed  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011b) Lead uptake, toxicity, and detoxification in plants. In: Whitacre DM (ed.) Reviews of environmental contamination and toxicology, vol 213. Springer New York, pp 113–136

    Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    PubMed  CAS  Google Scholar 

  • Qufei L, Fashui H (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res 129:251–260

    PubMed  Google Scholar 

  • Rodriguez E, Azevedo R, Moreira H, Souto L, Santos C (2013) Pb2+ exposure induced microsatellite instability in Pisum sativum in a locus related with glutamine metabolism. Plant Physiol Biochem 62:19–22

    PubMed  CAS  Google Scholar 

  • Romanowska E (2002) Gas exchange functions in metal stressed plants. In: Prasad M, Strzrlka K (eds) Physiology and Biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht, pp 257–285

    Google Scholar 

  • Romanowska E, Igamberdiev A, Parys E, Gardeström P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol Plant 116:148–154

    PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    CAS  Google Scholar 

  • Rucinska-Sobkowiak R, Nowaczyk G, Krzeslowska M, Rabeda I, Jurga S (2013) Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot 87:100–109

    CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH-oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    PubMed  CAS  Google Scholar 

  • Samardakiewicz S, Krzeslowska M, Bilski H, Bartosiewicz R, Wozny A (2012) Is callose a barrier for lead ions entering Lemna minor L. root cells? Protoplasma 249:347–351

    PubMed  CAS  Google Scholar 

  • Saradhi A, Saradhi P (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    Google Scholar 

  • Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Uzu G, Dumat C (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ 427–428:253–262

    PubMed  Google Scholar 

  • Schuurink RC, Shartzer SF, Fath A, Jones RL (1998) Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Pro Natl Acad Sci USA 95:1944–1949

    CAS  Google Scholar 

  • Seregin IV, Ivanov VB (1997) Histochemical investigation of cadmium and lead distribution in plants. Russ J Plant Physiol 44:791–796

    CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    CAS  Google Scholar 

  • Seregin IV, Pekhov VM, Ivanov VB (2002) Plasmolysis as a tool to reveal lead localization in the apoplast of root cells. Russ J Plant Physiol 49:283–285

    CAS  Google Scholar 

  • Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51:525–533

    CAS  Google Scholar 

  • Shahid M, Dumat C, Silvestre J, Pinelli E (2012a) Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils 48:689–697

    CAS  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012b) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12

    PubMed  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    PubMed  CAS  Google Scholar 

  • Simonovicova M, Bocova B, Huttova J, Mistrik I, Tamas L (2005) Effect of cadmium on oxalate oxidase activity in barley roots. Biol Plantarum 60:463–46

    CAS  Google Scholar 

  • Simonovicova M, Huttova J, Mistrik I, Siroka B, Tamas L (2004a) Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions. Plant Growth Regul 44:267–275

    CAS  Google Scholar 

  • Simonovicova M, Tamás L, Huttová J, Mistrík I (2004b) Effect of aluminium on oxidative stress related enzymes activities in barley roots. Biol Plantarum 48:261–266

    CAS  Google Scholar 

  • Singh B, Sharma R, Garg B (2006) Kinetics and molecular modeling of biologically active glutathione complexes with lead(II) ions. J Therm Anal Calorim 84:593–600

    CAS  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    PubMed  CAS  Google Scholar 

  • Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS (1997) Response of higher plants to lead contaminated environment. Chemosphere 34:2467–2493

    PubMed  CAS  Google Scholar 

  • Skinner RH, Radin JW (1994) The effect of phosphorus nutrition on water flow through the apoplastic bypass in cotton roots. J Exp Bot 45:423–428

    CAS  Google Scholar 

  • Stefanov K, Seizova K, Pandev S, Yanishlieva N, Marinova E, Tyankova L, Kuleva L, Popov S (1995a) Effect of lead ions on lipids and antioxidant complex activity of Capsicum annuum L leaves, pericarp and seeds. J Sci Food Agric 67:259–266

    CAS  Google Scholar 

  • Stefanov KL, Pandev SD, Seizova KA, Tyankova LA, Popov SS (1995b) Effect of lead on the lipid metabolism in spinach leaves and thylakoid membranes Biol Plantarum 37:251–256

    CAS  Google Scholar 

  • Stiborova M, Doubravova M, Brezinova A (1986) Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley (Hordeum vulgare L.). Photosynthetica 20:418–425

    CAS  Google Scholar 

  • Talwar PS, Gupta R, Maurya AK, Deswal R (2012) Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase. Plant Physiol Biochem 60:157–164

    PubMed  CAS  Google Scholar 

  • Tung G, Temple PJ (1996a) Histochemical detection of lead in plant tissues. Environ Toxicol Chem 15:906–914

    CAS  Google Scholar 

  • Tung G, Temple PJ (1996b) Uptake and localization of lead in corn (Zea mays L.) seedlings, a study by histochemical and electron microscopy. Sci Total Environ 188:71–85

    PubMed  CAS  Google Scholar 

  • Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548

    PubMed  CAS  Google Scholar 

  • Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157:1178–1185

    PubMed  CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042

    PubMed  CAS  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41:91–128

    PubMed  CAS  Google Scholar 

  • Valverde M, Trejo C, Rojas E (2001) Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction? Mutagenesis 16:265–270

    PubMed  CAS  Google Scholar 

  • Vodnik D, Jentschke G, Fritz E, Gogala N, Godbold DL (1999) Root-applied cytokinin reduces lead uptake and affects its distribution in norway spruce seedlings. Physiol Plantarum 106:75–81

    CAS  Google Scholar 

  • Waite KA, Wallin R, Qualliotine-Mann D, McPhail LC (1997) Phosphatidic acid-mediated phosphorylation of the NADPH-oxidase component p47-phox. Evidence that phosphatidic acid may activate a novel protein kinase. J Biol Chem 272:15569–15578

    PubMed  CAS  Google Scholar 

  • Walliwalagedara C, Atkinson I, van Keulen H, Cutright T, Wei R (2010) Differential expression of proteins induced by lead in the dwarf sunflower Helianthus annuus. Phytochemistry 71:1460–1465

    PubMed  CAS  Google Scholar 

  • Wang CR, Wang XR, Tian Y, Yu HX, Gu XY, Du WC, Zhou H (2008) Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem 27:970–977

    PubMed  Google Scholar 

  • Wang H, Shan X, Liu T, Xie Y, Wen B, Zhang S, Han F, Genuchten M (2007) Organic acids enhance the uptake of lead by wheat roots. Planta 225:1483–1494

    PubMed  CAS  Google Scholar 

  • Wang J, Chen J, Pan K (2013) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut Res 20:1441–1449

    CAS  Google Scholar 

  • Wang P, Zhang S, Wang C, Lu J (2012) Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotoxicol Environ Saf 78:28–34

    PubMed  CAS  Google Scholar 

  • Weryszko-Chmielewska E, Chwil M (2005) Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Sci Plant Nutr 51:203–212

    CAS  Google Scholar 

  • White PJ (2012) Heavy metal toxicity in plants. In: Shabala S (ed) Plant stress physiology. CABI, Wallingford, pp 210–237

    Google Scholar 

  • Wierzbicka M (1998) Lead in the apoplast of Allium cepa L. root tips—ultrastructural studies. Plant Sci 133:105–119

    CAS  Google Scholar 

  • Wierzbicka M (1987) Lead translocation and localization in Allium cepa roots. Can J Bot 65:1851–1860

    CAS  Google Scholar 

  • Wierzbicka MH, Przedpełska E, Ruzik R, Ouerdane L, Połeć-Pawlak K, Jarosz M, Szpunar J, Szakiel A (2007) Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231:99–111

    PubMed  CAS  Google Scholar 

  • Wojas S, Ruszczynska A, Bulska E, Wojciechowski M, Antosiewicz DM (2007) Ca2+-dependent plant response to Pb2+ is regulated by LCT1. Environ Pollut 147:584–592

    PubMed  CAS  Google Scholar 

  • Xiong ZT, Zhao F, Li MJ (2006) Lead toxicity in Brassica pekinensis Rupr: effect on nitrate assimilation and growth. Environ Toxicol 21:147–153

    PubMed  CAS  Google Scholar 

  • Xu J, Lian LJ, Wu C, Wang XF, Fu WY, Xu LH (2008) Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol 46:1488–1494

    PubMed  CAS  Google Scholar 

  • Xu Y, Zhou G, Zhou L, Li Y, Liu J (2007) Expression patterns of the rice class I metallothionein gene family in response to lead stress in rice seedlings and functional complementation of its members in lead-sensitive yeast cells. Chin Sci Bull 52:2203–2209

    CAS  Google Scholar 

  • Ye Z, Baker AJM, Wong M-H, Willis AJ (1998) Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat Bot 61:55–67

    CAS  Google Scholar 

  • Yu ZL, Zhang JG, Wang XC, Chen J (2008) Excessive copper Iinduces the production of reactive oxygen species, which is mediated by phospholipase D, nicotinamide adenine dinucleotide phosphate oxidase and antioxidant systems. J Integr Plant Biol 50:157–167

    PubMed  CAS  Google Scholar 

  • Zhou YQ, Huang SZ, Yu SL, Gu J-G, Zhao JZ, Han YL, Fu JJ (2010) The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicology 19:69–76

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pourrut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pourrut, B., Shahid, M., Douay, F., Dumat, C., Pinelli, E. (2013). Molecular Mechanisms Involved in Lead Uptake, Toxicity and Detoxification in Higher Plants. In: Gupta, D., Corpas, F., Palma, J. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38469-1_7

Download citation

Publish with us

Policies and ethics