Skip to main content

Role of Phytochelatins in Heavy Metal Stress and Detoxification Mechanisms in Plants

  • Chapter
  • First Online:
Heavy Metal Stress in Plants

Abstract

Being sessile in nature, plants respond to heavy metal stress in the environment in different ways. The responses include immobilization, exclusion, chelation, and compartmentalization of the metal ions. Simultaneously, plants have general stress response mechanisms within their system especially through the expression of stress molecules like metallothionein and phytochelatins (PCs). PCs are the best-characterized heavy metal chelators especially in the context of cadmium (Cd) tolerance in plants; they were first discovered as Cd-binding “Cadystins A and B” in a fission yeast and then found in plants, fungi, and all groups of algae including cyanobacteria. PCs are non-protein cysteine-rich oligopeptides having the general structure of (γ-glutamyl-cysteinyl) n-glycine (n = 2–11) and produced by the enzyme phytochelatin synthase. They are capable of binding to various metals including Cd, As Cu, or Zn via sulfhydryl and carboxyl residues, but the biosyntheses are preferentially controlled by the metal Cd or metalloid As. The fundamental roles of PCs in metal detoxification by plant cells are now well known and tolerance of Cd increases in yeast and bacteria with the overexpression of PC synthase genes. Sequestration of PC-metal complex in both plant and yeast cells occurs at the vacuole, where PCs are involved in the accumulation of the metal as complexes, particularly in response to Cd by forming high molecular weight compounds after incorporation of sulfur (S2−). The role of PCs may further be explored to improve the metal detoxification activities and tolerance characteristics of higher plants under various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcantara E, Romera FJ, Cañete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root FE (III) reductase in Fe deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the super family of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  PubMed  CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    Article  PubMed  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  PubMed  CAS  Google Scholar 

  • Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27

    Article  CAS  Google Scholar 

  • Callahan DL, Baker AJ, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    Article  PubMed  CAS  Google Scholar 

  • Carbonell-Barrachina MA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH Jr (1998) The influence of arsenic chemical form and concentration on Spartina patens and Spartina lterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43

    Article  CAS  Google Scholar 

  • Cataldo DA, Wildung RE (1983) The role of soil and plant metabolic processes in controlling trace element behavior and bioavailability to animals. Sci Total Environ 28:159–168

    Article  PubMed  CAS  Google Scholar 

  • CERCLA (2007) Priority list of hazardous substances. http://www.atsdr.cdc.gov/spl/supportdocs/ appendix-d.pdf. Accessed 30 Jan 2013

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian subcontinent—what lessons have been learned? Talanta 58:3–22

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Chattopadhyay B, Mukhopadhyay SK (2007) Sequestration and localization of metals in two common wetland plants of contaminated east Calcutta wetlands: a Ramsar site in India. Land Contam Reclam 15:437–452

    Article  Google Scholar 

  • Chatterjee S, Chetia M, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay SK (2011) A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India. Environ Monit Assess 178:361–371

    Article  PubMed  CAS  Google Scholar 

  • Chen A (2005) Long distance transport of phytochelatins in Arabidopsis and the isolation and characterization of cadmium tolerant mutants in Arabidopsis (PhD Thesis: UC San Diego Electronic Theses and Dissertations. http://escholarship.org/uc/item/0fm285zm)

  • Chetia M, Chatterjee S, Banerjee S, Nath MJ, Singh L, Srivastava RB, Sarma HP (2011) Groundwater arsenic contamination in Brahmaputra river basin: a water quality assessment in Golaghat (Assam), India. Environ Monit Assess 173:371–385

    Article  PubMed  CAS  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA 95:12043–12048

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C (2000a) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000b) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Cobbett CS (2000c) Heavy metal detoxification in plants: phytochelatin biosynthesis and function. Aust Biochem 31:15–18

    Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatin and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  PubMed  CAS  Google Scholar 

  • Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409:346–349

    Article  PubMed  CAS  Google Scholar 

  • Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:1–5

    Article  Google Scholar 

  • De Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris: chain length distribution and sulfide incorporation. Plant Physiol 104:255–261

    PubMed  Google Scholar 

  • Delhaize EP, Ryan R (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • DiDonato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis yellow stripe-like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes. Plant J 39:403–414

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin

    Google Scholar 

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton

    Google Scholar 

  • Ducruix C, Junot C, Fiévet JB, Villiers F, Ezan E, Bourguignon J (2006) New insights into the regulation of phytochelatin biosynthesis in A. thaliana cells from metabolite profiling analyses. Biochimie 88:1733–1742

    Article  PubMed  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Elangovan D, Chalakh ML (2006) Arsenic pollution in west Bengal. Technol Dig 9:31–35 (http://www.nabard.org/fileupload/DataBank/TechnicalDigest/ContentEnglish/issue9td-8.pdf)

    Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed  CAS  Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsh 44:361–369

    CAS  Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Mishra S, Srivastava S, Tripathi RD (2006) Role of phytochelatins in phytoremediation of heavy metals. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Heidelberg

    Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  PubMed  CAS  Google Scholar 

  • Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata: a new model system for analysis of arsenic hyperaccumulation. Plant Physiol 136:3198–3208

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Rai UN, Tripathi RD, Inouhe M (2002a) Impacts of fly-ash on soil and plant responses. J Plant Res 115:401–409

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2002b) Possible roles of phytochelatins and glutathione metabolism in cadmium tolerance in chickpea roots. J Plant Res 115:429–437

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2004) Changes in the levels of phytochelatins and related metal binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J Plant Res 117:253–256

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Tripathi RD, Mishra S, Srivastava S, Dwivedi S, Rai UN, Yang XE, Huang H, Inouhe M (2008) Arsenic accumulation in roots and shoots vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. J Environ Biol 29:281–286

    PubMed  CAS  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related with phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161

    Article  CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Nakagawa CW, Mutoh N, Isobe M, Goto T (1991) Two pathways in the biosynthesis of cadystins (γEC) nG in the cell-free system of the fission yeast. Biochem Cell Biol 69:115–121

    Article  PubMed  CAS  Google Scholar 

  • Hernández LE, Gárate A, Carpena-Ruiz R (1997) Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil 189:97–106

    Article  Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot Article ID 872875, 37. doi:10.1155/2012/872875

  • Howden R, Cobbett CS (1992) Cadmium-sensitive mutants of Arabidopsis thaliana. Plant Physiol 100:100–107

    Article  PubMed  CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Huang HG, Li TX, Tian S, Gupta DK, Zhang X, Yang XE (2008) Role of EDTA in alleviating lead toxicity in accumulator species of Sedum alfredii H. Bioresour Technol 99:6088–6096

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol 158:1779–1788

    Article  PubMed  CAS  Google Scholar 

  • Inaba T, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Nakagawa H, Nogawa K (2005) Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol Lett 15:192–201

    Article  CAS  Google Scholar 

  • Ingwersen J, Streck T (2005) A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling. J Environ Qual 34:1026–1035

    Article  PubMed  CAS  Google Scholar 

  • Inouhe M, Ninomiya S, Tohoyama H, Joho M, Murayama T (1994) Different characteristics of roots in the cadmium-tolerance and Cd binding complex formation between mono- and dicotyledonous plants. J Plant Res 107:201–207

    Article  CAS  Google Scholar 

  • Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17:65–78

    Article  CAS  Google Scholar 

  • Inouhe M, Huang HG, Chaudhary SK, Gupta DK (2012) Heavy metal bindings and its interactions with thiol peptides and other biological ligands in plant cells. In: Gupta DK, Sandalio LM (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Germany, pp 1–22

    Google Scholar 

  • Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283:8374–8383

    Article  PubMed  CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  PubMed  CAS  Google Scholar 

  • Kirkby EA, Johnson AE (2008) Soil and fertilizer phosphorus in relation to crop nutrition. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht

    Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    Article  CAS  Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy-metal poisoning. Phytochemistry 31:2663–2667

    Article  CAS  Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    Article  PubMed  CAS  Google Scholar 

  • Kondo N, Imai K, Isobe M, Goto T, Murasugi A, Wada-Nakagawa C, Hayashi Y (1984) Cadystin A and B, major unit peptides comprising cadmium-binding peptides induced in afission yeast-separation, revision of structures and synthesis. Tetrahedron Lett 25:3869–3872

    Article  CAS  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Clemens S (2005) Functions and homeostasis of zinc, copper and nickel in plants. In: Tama′s M, Martinoia E (eds) Topics in current genetics 14. Springer, Heidelberg

    Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Krupa Z (1988) Cadmium-induced changes in the composition and structure of the light-harvesting complex II in radish cotyledons. Physiol Plant 73:518–524

    Article  CAS  Google Scholar 

  • Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  PubMed  CAS  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO4 2- uptake in intact canola. Plant Physiol 111:147–157

    PubMed  CAS  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass AMD, Touraine B (1999) Inter-organ signalling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Degenhardt J, Stenzler LM, Howell SH, Kochian LV (1998) Aluminium-resistant Arabidopsis mutant that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:9–18

    Article  PubMed  CAS  Google Scholar 

  • Larsson EH, Borhman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039

    CAS  Google Scholar 

  • Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bich J-N, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Ann Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc Natl Acad Sci USA 94:42–47

    Article  PubMed  CAS  Google Scholar 

  • Li ZS, Szczypka M, Lu YP, Thiele DJ, Rea PA (1996) The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271:6509–6517

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Tang Y, Du R, Yang H, Wu Q, Qiu R (2010) Root for aging for zinc and cadmium requirement in the Zn/Cd hyperaccumulator plant Sedum alfredii. Plant Soil 327:365–375

    Article  CAS  Google Scholar 

  • Loeffler S, Hochberger A, Grill E, Winnacker EL, Zenk MH (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett 258:42–46

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculı′k M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  PubMed  CAS  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatins and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    PubMed  CAS  Google Scholar 

  • Maksymiec (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals, Springer Briefs in Biometals. doi:10.1007/978-94-007-4441-7_2

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants 2nd edn. Academic Press, London

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • Mehra RK, Tran K, Scott GW, Mulchandani P, Sani SS (1996) Ag (I)-binding to phytochelatins. J Inorg Biochem 61:125–142

    Article  PubMed  CAS  Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Mondal D, Polya DA (2008) Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probabilistic risk assessment. Appl Geochem 23:2987–2998

    Article  CAS  Google Scholar 

  • Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107

    Article  PubMed  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  PubMed  CAS  Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1981) Cadmium-binding peptide induced in fission yeast, Schizosaccharimyces pombe. J Biochem 90:1561–1564

    PubMed  CAS  Google Scholar 

  • Murphy A, Taiz L (1995) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis (Ecotypic variation and copper-sensitive mutants). Plant Physiol 108:29–38

    PubMed  CAS  Google Scholar 

  • Mutoh N, Hayashi Y (1988) Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem Biophys Res Commun 151:32–39

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (1992) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Mizuno T, Obata H (2008) Involvement of histidine-rich domain of ZIP family transporter TjZNT1 in metal ion specificity. Plant Physiol Biochem 46:601–606

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Nocito FF, Lancilli C, Giacomini B, Sacchi GA (2007) Sulfur metabolism and cadmium stress in higher plants. Plant Stress © Global Science Books. Available at http://globalsciencebooks.info/JournalsSup/images/Sample/PS_1(2)142-156.pdf. Accessed on 21 February 2013

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    PubMed  CAS  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  PubMed  CAS  Google Scholar 

  • Oven M, Page J, Zenk M, Kutchan T (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase. J Biol Chem 277:4747–4754

    Article  PubMed  CAS  Google Scholar 

  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. App Biochem Biotechnol 160:945–963

    Article  CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance: characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  PubMed  CAS  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatins transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  PubMed  CAS  Google Scholar 

  • Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci USA 104:8532–8537

    Article  PubMed  CAS  Google Scholar 

  • Perales-Vela HV, Pen˜a-Castro JM, Can˜izares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  PubMed  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, Di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electron J Biotechol 6(3). doi:10.2225/vol6-issue3-fulltext-6

  • Preveral S, Gayet L, Moldes C, Hoffmann J, Mounicou S, Gruet A, Reynaud F, Lobinski R, Verbavatz JM, Vavasseur A, Forestier C (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides. J Biol Chem 284:4936–4943

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1990) Phytochelatins. Ann Rev Biochem 59:61–86

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides: structure biosynthesis and function. Plant Physiol 109:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (2012) Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Planta 145:154–164

    Article  CAS  Google Scholar 

  • Robinson NJ (1989) Metal-binding polypeptides in plants. In: Shaw AJ (ed) Heavy metal tolerance in higher plants: evolutionary aspects. CRC Press Inc., Boca Raton

    Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism: the long and smelling road. Plant Physiol 136:2443–2450

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Kato N, Krämer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soils and waters. CRC Press LLC, Boca Raton

    Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    PubMed  CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Phys 49:643–668

    Article  CAS  Google Scholar 

  • Salt DE, Thurman DA, Tomsett AB, Sewell AK (1989) Copper phytochelatins of Mimulus guttatus. Proc Roy Soc B-Biol Sci 236:79–89

    Article  CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots: evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302

    PubMed  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Schaaf G, Schikora A, Häberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wirén N (2005) A putative function for the Arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762–774

    Article  PubMed  CAS  Google Scholar 

  • Schat H, Kalff MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99:1475–1480

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Huang B, Hatch E, Goldsbrough PB (1987) Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol 85:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55:1–22

    Article  CAS  Google Scholar 

  • Shah K, Dubey RS (1995) Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol Biochem 33:577–584

    CAS  Google Scholar 

  • Siedlecka A, Krupa Z (1996) Interaction between cadmium and iron and its effects on photosynthesis capacity of primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 34:833–842

    CAS  Google Scholar 

  • Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192

    Article  PubMed  CAS  Google Scholar 

  • Sooksa-Nguan T, Yakubov B, Kozlovskyy VI, Barkume CM, Howe KJ, Thannhauser TW, Rutzke MA, Hart JJ, Kochian LV, Rea PA, Vatamaniuk OK (2009) Drosophila ABC transporter, DmHMT-1, confers tolerance to cadmium: DmHMT-1 and its yeast homolog, SpHMT-1, are not essential for vacuolar phytochelatins sequestration. J Biol Chem 284:354–362

    Article  PubMed  CAS  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Ann Rev Plant Physiol Plant Mol Biol 41:553–575

    Article  CAS  Google Scholar 

  • Sterckeman T, Perriguey J, Cae lM, Schwartz C, Morel JL (2004) Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: consequences for the assessment of the soil quantity and quality factors. Plant Soil 262:289–302

    Article  CAS  Google Scholar 

  • Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    Article  PubMed  CAS  Google Scholar 

  • Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948

    Article  PubMed  CAS  Google Scholar 

  • Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    Article  PubMed  CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporters family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatins synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk O, Mari S, Lu Y, Rea P (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Sundaram MV, Rea PA (2005) CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 280:23684–23690

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093

    Article  PubMed  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Whiting SN, Leake JR, McGrath SP, Baker AJM (2000) Positive responses to zinc and cadmium by roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 145:199–210

    Article  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 77803:1–23

    Google Scholar 

  • Zheng J, Hintelmann H, Dimock D, Dzurko MS (2003) Speciation of arsenic in water, sediment, and plants of the Moira watershed, Canada, using HPLC coupled to high resolution ICP-MS. Ann Bioanal Chem 377:14–24

    Article  CAS  Google Scholar 

  • Zhu D, Schwab AP, Banks MK (1999) Heavy metal leaching from mine tailings as affected by plants. J Environ Qual 28:1727–1732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Soumya Chatterjee, Defence Research Laboratory, Tezpur, Assam, India in preparing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Inouhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, D.K., Vandenhove, H., Inouhe, M. (2013). Role of Phytochelatins in Heavy Metal Stress and Detoxification Mechanisms in Plants. In: Gupta, D., Corpas, F., Palma, J. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38469-1_4

Download citation

Publish with us

Policies and ethics