Skip to main content

Metallomics and Metabolomics of Plants Under Environmental Stress Caused by Metals

  • Chapter
  • First Online:
Heavy Metal Stress in Plants

Abstract

The role of metals in living organisms is considered on the basis of abundance of metalloproteins and metallometabolites and the occurrence of environmental hazards caused by metals lixiviation and mobility from soils, industrial and mining wastes, which contribute to plant uptake, and can finally get to man from seed and vegetal foods. Intake by plants of toxic metals such as mercury, arsenic, and cadmium, and the transformation that suffers in the organism, as well as the alteration of metabolism represents a valuable appraisal of organism’s behavior under the presence of deleterious metals as well as their traffic along the components of cell and tissues, and the interaction with essential elements. Recent analytical approaches to obtain massive information from complex living organisms, such as metallomics to characterize the entirety metal biomolecules in an organism (metallome) and metabolomics to decipher the whole molecules with mass less than 1,000 Da, are the new generation of analytical techniques for assessment plant and other organisms’ metal stress, as well as the study of metal pollution remediation driven by plants (hyperaccumulators), preparation of plant-based essential enriched food, and other useful applications. Metallomics techniques are based on hyphenated analytical units combining chromatographic components, high sensitivity element detectors (mainly ICP-MS) for metal species detection, and tandem mass spectrometry for chemical species identification, integrating a three-dimensional analytical platform. Metabolomics mainly uses high resolution mass spectrometry as QqQ-TOF-MS or Orbitrap. Therefore, Integration of these omics provides results with high-added value representing a new angle to study overall response of plants under the action of metals. A great variety of examples can be pointed out in relation to plant exposure experiments to metals, use of plant as bioindicator for environmental monitoring of metal pollution, preparation of essential elements of functional foods based on microalgae under biotechnological production, behavior of heavy metal hyperaccumulator plants, and many other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan N, Nakamura T, Komatsu S (2012) Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress. Amino Acids 42:317–327

    Article  PubMed  CAS  Google Scholar 

  • Arduini I, Goldbold DL, Omnis A (1994) Cadmium and copper uptake and distribution in Mediaterranean tree seedlings. Physiol Plant 97:111–117

    Article  Google Scholar 

  • Azevedo RA, Lea PJ (2005) Toxic metals in plants. Braz J Plant Physiol 17:1–190

    Article  Google Scholar 

  • Bailey NJ, Oven M, Holmes F, Nicholson JK, Zenk MH (2003) Metabolomic analysis of the consequence of cadmium exposure in Silene cucubatus cell cultures via H-1 NMR spectroscopy and chemometrics. Phytochemistry 62:851–858

    Article  PubMed  CAS  Google Scholar 

  • Bell PF, Parker DR, Page AL (1992) Contrasting selenate sulfate interaction in selenium accumulating and nonaccumulating plant species. Soil Sci Soc Am J 56:1818–1824

    Article  CAS  Google Scholar 

  • Bluemlein K, Klimm E, Raab A, Feldmann J (2009) Selenite enhances arsenate toxicity in Thunbergia alata. Environ Chem 6:486–494

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  PubMed  CAS  Google Scholar 

  • Booth SC, Workentine ML, Weljie AM, Turner RJ (2011) Metabolomics and its application to studying metal toxicity. Metallomics 3:1142–1152

    Article  PubMed  CAS  Google Scholar 

  • Bowen BP, Northen TR (2010) Dealing with the unknown: metabolomics and metabolite atlases. J Am Soc Mass Spectrom 21:1471–1476

    Article  PubMed  CAS  Google Scholar 

  • Braude GL, Nash AM, Wolf WJ, Carr RL, Chaney RL (1980) Cadmium and lead content of soybean products. J Food Sci 45:1187–1199

    Article  CAS  Google Scholar 

  • Burianová I, Machát J, Niedobová E, Doucha J, Kanický V (2005) Fractionation of iodine in iodine-enriched algae Chlorella. Chem Listy 99:273–276

    Google Scholar 

  • Cañas B, Pineiro C, Calvo E, Lopez-Ferrer D, Gallardo JM (2007) Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 1153:235–258

    Article  PubMed  CAS  Google Scholar 

  • Chassaigne H, Chery CC, Bordin G, Vanhaecke F, Rodriguez AR (2004) 2 Dimensional gel electrophoresis technique for yeast selenium containing proteins—sample preparation and MS approaches for processing 2-D gel protein spots. J Anal At Spectrom 19:85–95

    Article  CAS  Google Scholar 

  • Chen J, Yang ZM, Su Y, Han FX, Monts DL (2009) Phytoremediation of heavy metal/metalloid-contaminated soils. In: Steinberg RV (ed) Contaminated soils: environmental impact, disposal and treatment. Nova Science Publishers, New York

    Google Scholar 

  • Cubbada F, Ciardullo S, D’Amato M, Raggi A, Aureli F, Carcea M (2010) Arsenic contamination of the environment-food chain: a survey on wheat as a test pant to investigate phytoavailable arsenic in Italian agricultural soils and as a source of inorganic arsenic in the diet. J Agric Food Chem 58:10176–10183

    Article  CAS  Google Scholar 

  • Dal Corso G (2012) Heavy metals toxicity in plants. In: Furini A (ed) Plants and heavy metals. Springer Briefs in Biometals

    Google Scholar 

  • Dickinson RE, Cicerone RJ (1986) Future global warming from atmospheric trace gases. Nature 319:109–115

    Article  CAS  Google Scholar 

  • Ellis RD, Salt ED (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  PubMed  CAS  Google Scholar 

  • Fels IG, Cheldelin VH (1949) Selenate inhibition studies. III. The role of sulfate in selenate toxicity in yeast. Arch Biochem 22:402–405

    PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Garcia JS, de Magalhaes CS, Arruda MAZ (2006) Trends in metal-binding and metalloprotein analysis. Talanta 69:1–15

    Article  PubMed  CAS  Google Scholar 

  • García-Sevillano MA, González-Fernández M, Jara-Biedma R, García-Barrera T, López-Barea J, Pueyo C, Gómez-Ariza JL (2012) Biological response of free-living mouse Mus spretus from Doñana national park under environmental stress based on assessment of metal-binding biomolecules by SEC-ICP-MS. Anal Bioanal Chem 404:1967–1981

    Article  PubMed  CAS  Google Scholar 

  • Ghani A (2010) Toxic effects of heavy metals on plant growth and metal accumulation in Maize (Zea mays L.). Iran J Toxicol 3:325–334

    Google Scholar 

  • Gierasch LM, Gershenson A (2009) Post-reductionist protein science, or putting Humpty Dumpty back together again. Nat Chem Biol 5:774–777

    Article  PubMed  CAS  Google Scholar 

  • González-Fernández M, García-Barrera T, Arias-Borrego A, Jurado J, Pueyo C, Lopez-Barea J, Gomez-Ariza JL (2009) Metallomics integrated with proteomics in deciphering metal-related environmental issues. Biochimie 91:1311–1317

    Article  PubMed  CAS  Google Scholar 

  • González-Fernández M, García-Barrera T, Jurado J, Prieto-Álamo MJ, Pueyo C, López-Barea J, Gómez-Ariza JL (2008) Integrated application of transcriptomics, proteomics, and metallomics in environmental studies. Pure Appl Chem 80:2609–2626

    Article  CAS  Google Scholar 

  • Gómez-Ariza JL, García-Barrera T, Lorenzo F, Arias A (2005) Analytical characterization of bioactive metal species in the cellular domain (metallomics) to simplify environmental and biological proteomics. Int J Environ Anal Chem 85:255–266

    Article  CAS  Google Scholar 

  • Gómez-Ariza JL, Zeini-Jahromi E, González-Fernández M, García-Barrera T, Gailer J (2011) Liquid chromatography-inductively coupled plasma-based metallomic approaches to probe health-relevant interactions between xenobioticsand mammalian organisms. Metallomics 3:566–577

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Jacinto V, Arias-Borrego A, García-Barrera T, Garbayo I, Vílchez C, Gómez-Ariza JL (2010) Iodine speciation in iodine-enriched microalgae Chlorella vulgaris. Pure Appl Chem 82:473–481

    Article  CAS  Google Scholar 

  • Gómez-Jacinto V, García-Barrera T, Garbayo I, Vílchez C, Gómez-Ariza JL (2012a) Metallomic study of selenium biomolecules metabolized by the microalgae Chlorella sorkiniana in the biotechnological production of functional foods enriched in selenium. Pure Appl Chem 84:269–280

    Google Scholar 

  • Gómez-Jacinto V, García-Barrera T, Garbayo I, Vílchez C, Gómez-Ariza JL (2012b) Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media. Chem Listy 66:821–828

    Google Scholar 

  • Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333

    Article  Google Scholar 

  • Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:1271–1280

    Article  PubMed  CAS  Google Scholar 

  • Han FX, Su Y, Monts DL, Waggoner AC, Plodinec JM (2006) Binding distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennesse, USA. Sci Total Environ 368:753–768

    Article  PubMed  CAS  Google Scholar 

  • Hurd-Karrer AM (1937) Selenium absorption by crop plants as related to their sulphur requirement. J Agric Res 54:601–608

    CAS  Google Scholar 

  • Hurd-Karrer AM (1938) Relation of sulphate to selenium absorption by plants. Amer J Bot 25:666–675

    Article  CAS  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598

    Article  PubMed  CAS  Google Scholar 

  • Jahangir M, Abdel-Farid IB, Hae Choi Y, Verpoorte R (2008) Metal ion-inducing metabolite accumulation in Brassica rapa. J Plant Physiol 165:1429–1437

    Article  PubMed  CAS  Google Scholar 

  • Kahakachchi C, Boakye HT, Uden PC, Tyson JF (2004) Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. J Chromatogr A 1054:303–312

    PubMed  CAS  Google Scholar 

  • Kammenga JE, Dallinger R, Donker MH, Köhler H, Simonsen V, Triebskorn R, Weeks JM (2000) Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment. Rev Environ Contam Toxicol 164:93–147

    PubMed  CAS  Google Scholar 

  • Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318–328

    Article  PubMed  CAS  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    Article  CAS  Google Scholar 

  • Koch I, Wang L, Ollson CA, Cullen WR, Reimer KJ (2000) The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environ Sci Tech 34:22–26

    Article  CAS  Google Scholar 

  • Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroederk JI, Salt DE (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Le Lay P, Isaure MP, Sarry JE, Kuhn L, Fayard B, Le Bail JL, Bastien O, Garin J, Roby C, Bourgignon J (2006) Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium suplí. Biochimie 88:1533–1547

    Article  PubMed  CAS  Google Scholar 

  • Lenka M, Panda KK, Panda BB (1992) Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant—4. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam India. Arch Environ Contam Toxicol 22:195–202

    Article  PubMed  CAS  Google Scholar 

  • Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem 10:2630–2639

    Article  Google Scholar 

  • Liu X, Yang C, Zhang L, Li L, Liu S, Yu J, You L, Zhou D, Xia C, Zhao J, Wu H (2011) Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology 20:1422–1431

    Article  PubMed  CAS  Google Scholar 

  • Lozano-Rodríguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoots and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128

    Article  Google Scholar 

  • Lu Y (2010) Metal ions as matchmakers for proteins. Proc Natl Acad Sci USA 107:1811–1812

    Article  PubMed  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 48:123–128

    Google Scholar 

  • Liu J, Qian M, Cai G, Yang J, Zhu Q (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447

    Article  PubMed  CAS  Google Scholar 

  • Lugon-Moulin N, Zhang M, Gadani F, Rossi L, Koller D, Kraus M, Wagner GJ (2004) Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Adv Agron 83:111–180

    Article  CAS  Google Scholar 

  • Maeda S, Nakashima S, Takeshita T, Higashi S (1985) Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. 2. By Chlorella vulgaris isolated from arsenic-polluted environment. Separ Sci Technol 20:153–161

    Article  CAS  Google Scholar 

  • Martínez-Fábregas J, Rubio S, Díaz-Quintana A, Díaz-Moreno I, de la Rosa MA (2011) Proteomic tools for the analysis of transient interactions between metalloproteins. FEBS J 278:1401–1410

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AK, Edelman M (1987) Intra-membrane translocation and post-translational palmitoylation of the chloroplast 32 kDa herbicide binding protein. Proc Natl Acad Sci USA 84:1497–1501

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high- affinity phosphate-uptake system-a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms-constitutive and adaptive plant-response to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993

    Article  CAS  Google Scholar 

  • Mesko MF, Hartwig CA, Bizzi CA, Pereira JSF, Mello PA, Flores EMM (2011) Sample preparation strategies for bioinorganic analysis by inductively coupled plasma mass spectrometry. Int J Mass Spectrom 307:123–136

    Article  CAS  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  PubMed  CAS  Google Scholar 

  • Montes-Bayón M, Yanes EG, de León CP, Jayasimhulu K, Stalcup A, Shann J, Caruso JA (2002) Initial studies of selenium speciation in Brassica juncea by LC with ICP-MS and ES-MS detection: an approach for phytoremediation studies. Anal Chem 74:107–113

    Article  PubMed  CAS  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    Article  PubMed  CAS  Google Scholar 

  • Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138

    Article  PubMed  CAS  Google Scholar 

  • Mounicou S, Shah M, Meija J, Caruso JA, Vonderheide AP, Shann J (2006) Localization and speciation of selenium and mercury in Brassica juncea – Implication for Se–Hg antagonism. J Anal At Spectrom 21:404–412

    Article  CAS  Google Scholar 

  • Murray L, Raab A, Feldmann J (2003) Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl Organomet Chem 17:669–674

    Article  CAS  Google Scholar 

  • Neumann S, Böcker S (2010) Computational mass spectrometry for metabolomics: identification of metabolites and small molecules. Anal Bioanal Chem 398:2779–2788

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E (1999) Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Nriagu JA (1996) A history of global metal pollution. Science 272:223–224

    Article  CAS  Google Scholar 

  • Ortega-Villasante C, Rellán-Álvarez R, del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  PubMed  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Pei KL, Gailer J (2009) Probing the interaction of arsenobetaine with blood plasma constituents in vitro: an SEC-ICP-AES study. Metallomics 1:403–408

    Article  PubMed  CAS  Google Scholar 

  • Phillips DJH (1990) Arsenic in aquatic organisms: A review of emphasizing chemical speciation. Aqua Toxicol 16:151–186

    Article  CAS  Google Scholar 

  • Post Gate J (1949) Competitive inhibition of sulphate reduction by selenate. Nature 164:670–671

    Article  CAS  Google Scholar 

  • Post Gate J (1952) Competitive and non-competitive inhibitors of bacterial sulphate reduction. J Gen Microbiol 6:128–142

    Article  CAS  Google Scholar 

  • Przedpełska-Wąsowicz E, Polatajko A, Wierzbicka M (2012) The influence of cadmium stress on the content of mineral nutrients and metal-binding proteins in Arabidopsis halleri. Water Air Soil Pollut 223:5445–5458

    Article  PubMed  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180:169–181

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Segre D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–1767

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (2003) Ion genomics. Nat Biotechnol 21:1149–1151

    Article  PubMed  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  PubMed  CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) The symbiotic solution to arsenic contamination. Nature 404:951–952

    PubMed  CAS  Google Scholar 

  • Shrift A (1954) Sulphur selenium antagonism. I: antimetabolic action of selenate on the growth of Chlorella vulgaris. Amer J Bot 41:223–230

    Article  CAS  Google Scholar 

  • Signes-Pastor AJ, Mitra K, Sarkhel S, Hobbes M, Burlo F, de Groot WT, Carbonell-Barrachina AA (2008) Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. J Agric Food Chem 56:9469–9474

    Article  PubMed  CAS  Google Scholar 

  • Sobolev D, Begonia MF (2008) Effects of heavy metal contamination upon soil microbes: lead induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1:193–197

    Article  CAS  Google Scholar 

  • Stadtman TC (1980) Selenium-dependent enzymes. Ann Rev Biochem 49:93–110

    Article  PubMed  CAS  Google Scholar 

  • Sun GX, Williams PN, Zhu YG, Deacon C, Carey AM, Raab A, Feldmann J, Meharg AA (2009) Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ Int 35:473–475

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J, Guan Y (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78:840–845

    Article  PubMed  CAS  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34

    Article  CAS  Google Scholar 

  • Szpunar J, Bouyssiere B, Lobinski R (2003) Sample preparation for speciation analysis for metallobiomolecules. In: Mester Z, Sturgeon R (eds) Sample preparation for trace element analysis. Elsevier, Amsterdam

    Google Scholar 

  • Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130:442–465

    Article  PubMed  CAS  Google Scholar 

  • Tanaka KFS, Fujiwara T, Yoneyama T (2007) Qualitative estimation of the contribution of the phloem in cadmium transport to grains in rice plant (Oryza sativa L.). Soil Sci Plant Nutr 53:72–77

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  • Thiele DJ, Gitlin JD (2008) Assembling the pieces. Nat Chem Biol 4:145–147

    Article  PubMed  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  PubMed  CAS  Google Scholar 

  • Tudoreanu L, Phillips CJC (2004) Modelling cadmium uptake and accumulation in plants. Adv Agron 84:121–157

    Article  CAS  Google Scholar 

  • Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove LJ, Fernie AR (2005) Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta 221:891–903

    Article  PubMed  CAS  Google Scholar 

  • Van Belleghem F, Cuypers A, Semane B, Smeets K, Vangronsveld JD, Haen J, Valcke R (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 17:495–508

    Article  CAS  Google Scholar 

  • Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumloffel D, Lebrun M, Lobinski R (2003) Speciation of nickel in hyperaccumulating plant by high-performance inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75:2740–2745

    Article  PubMed  CAS  Google Scholar 

  • Van den Broeck K, Vandecasteele C, Geuns JMC (1998) Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as a bioindicator for arsenic contamination. Anal Chim Acta 361:101–111

    Article  Google Scholar 

  • Vázquez S, Goldsbrough P, Carpena RO (2006) Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiol Plantarum 128:487–495

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  PubMed  CAS  Google Scholar 

  • Viant MR (2008) Recent developments in environmental metabolomics. Mol Bio Syst 4:980–986

    CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663

    Article  PubMed  CAS  Google Scholar 

  • Vivas A, Moreno B, del Val C, Macci C, Masciandaro G, Benitez E (2008) Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J Environ Monit 10:1287–1296

    Article  PubMed  CAS  Google Scholar 

  • Virupaksha TK, Shrift A, Tarver H (1966) Metabolism of selenomethionine in selenium accumulator and non-accumulator Astragalus species. Biochim Biophys Acta 130:45–55

    Article  CAS  Google Scholar 

  • Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem 403:1523–1548

    Article  PubMed  CAS  Google Scholar 

  • Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830

    Article  PubMed  CAS  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35

    Article  PubMed  CAS  Google Scholar 

  • Wang YD (2004) Phytoremediation of mercury by terrestrial plants. Department of Botany, PhD thesis. Stockholm University, Sweden

    Google Scholar 

  • Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual 33:1779–1785

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Wrobel K, Kannamkumarath SS, Wrobel K, Caruso JA (2003) Hydrolysis of proteins with methanesulfonic acid for improved HPLC-ICP-MS determination of selenomethionine in yeast and nuts. Anal Bioanal Chem 375:133–138

    PubMed  CAS  Google Scholar 

  • Yamaguchi N, Mori S, Baba K, Kaburagi-Yada S, Arao T, Kitajima N, Hokura A, Terada Y (2011) Cadmium distribution in the root tissues of Solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies. Environ Exp Bot 71:198–206

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  • Zeini Jahromi E, Gailer J (2010) Remarkable effect of mobile phase buffer on the SEC-ICP-AES derived Cu, Fe and Zn-metalloproteome pattern of rabbit blood plasma. Metallomics 2:460–468

    Article  CAS  Google Scholar 

  • Zhang J, Zhao QZ, Duan GL, Huang YC (2011) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40

    Article  CAS  Google Scholar 

  • Zhang S, Li T, Huang H, Zou T, Zhang X, Yu H, Zheng Z, Wang Y (2012) Cd accumulation and phytostabilization potential of dominant plants surrounding mining tailings. Environ Sci Poll Res 19:3879–3888

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gómez Ariza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gómez Ariza, J.L., García-Barrera, T., García-Sevillano, M.A., González-Fernández, M., Gómez-Jacinto, V. (2013). Metallomics and Metabolomics of Plants Under Environmental Stress Caused by Metals. In: Gupta, D., Corpas, F., Palma, J. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38469-1_10

Download citation

Publish with us

Policies and ethics