Skip to main content

Kinematic Design of Geared Five-Bar Linkage

  • Chapter
  • First Online:
Design of Special Planar Linkages

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 1495 Accesses

Abstract

This chapter starts from the discussion of the number of points that a planar four-bar linkage can precisely trace and then proposes a noncircular gear coupled steering mechanism which could strictly follow the Ackermann steering rule compared with the existing four-bar steering linkages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pramanik S (2002) Kinematic synthesis of a six-member mechanism for automotive steering. J Mech Des 124(4):642–645

    Article  MathSciNet  Google Scholar 

  2. Reimpell H, Stoll H, Betzler JW (2002) The automotive chassis: engineering principles, 2nd edn. Butterworth Heinemann, Oxford

    Google Scholar 

  3. Suh CH, Mecklenburg AW (1973) Optimal design of mechanisms with the use of matrices and least squares. Mech Mach Theory 8:479–495

    Article  Google Scholar 

  4. Simionescu PA, Beale D (2002) Optimum synthesis of the four-bar function generator in its symmetric embodiment: the Ackermann steering linkage. Mech Mach Theory 37(12):1487–1504

    Article  MATH  Google Scholar 

  5. Simionescu PA, Talpasanu I (2007) Synthesis and analysis of the steering system of an adjustable tread-width four-wheel tractor. Mech Mach Theory 42(5):526–540

    Article  MATH  Google Scholar 

  6. Simionescu PA, Beale D, Talpasanu I (2007) Dynamic effect of the bump steer in a wheeled tractor. Mech Mach Theory 42(10):1352–1361

    Article  MATH  Google Scholar 

  7. Simionescu PA, Smith MR (2002) Initial estimates in the design of central-lever steering linkages. J Mech Des 124(4):646–651

    Article  Google Scholar 

  8. Zarak CE, Townsend MA (1983) Optimal design of rack-and-pinion steering linkages. J Mech Trans Auto Des 105(2):220–226

    Article  Google Scholar 

  9. Erdman AG, Sandor GN, Kota S (2001) Mechanism design: analysis and synthesis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  10. Rahmani Hanzaki A, Rao PVM, Saha SK (2009) Kinematic and sensitivity analysis and optimization of planar rack-and-pinion steering linkages. Mech Mach Theory 44(1):42–56

    Article  MATH  Google Scholar 

  11. Chicurel E (1999) A steering interval mechanism. Mech Mach Theory 34(3):421–436

    Article  MATH  Google Scholar 

  12. David DA, Danwen Q (1987) Analytical design of seven joint spatial steering mechanisms. Mech Mach Theory 22(4):315–319

    Article  Google Scholar 

  13. Simionescu PA, Smith MR, Tempea I (2000) Synthesis and analysis of the two loop translational input steering mechanism. Mech Mach Theory 35(7):927–944

    Article  MATH  Google Scholar 

  14. Simionescu PA, Smith MR (2000) Applications of watt II function generator cognates. Mech Mach Theory 35(11):1535–1549

    Article  MathSciNet  MATH  Google Scholar 

  15. Felzien ML, Cronin DL (1985) Steering error optimization of the Macpherson strut automotive front suspension. Mech Mach Theory 20(1):17–26

    Article  Google Scholar 

  16. Mántaras DA, Pablo L, Carlos V (2004) Development and validation of a three-dimensional kinematic model for the McPherson steering and suspension mechanisms. Mech Mach Theory 39(6):603–619

    Article  MATH  Google Scholar 

  17. Carcaterra A, D’Ambrogio W (1998) A function generating differential mechanism for an exact solution of the steering problem. Mech Mach Theory 33(5):535–549

    Article  MATH  Google Scholar 

  18. Raghavan M (1996) Number and dimensional synthesis of independent suspension mechanisms. Mech Mach Theory 31(8):999–1195

    Article  Google Scholar 

  19. Huang XZ, Zhang YM (2010) Reliability sensitivity analysis for rack-and-pinion steering linkages. J Mech Des 132(7):071012

    Article  Google Scholar 

  20. Emura T, Arakawa A (1992) A new steering mechanism using noncircular gears. JSME Int J 35(4):604–610

    Google Scholar 

  21. Donner DB (2001) Function generation utilizing an eight-link mechanism and optimized non-circular gear elements with application to automotive steering. Proc Inst Mech Eng Part C J Mech Eng Sci 215(7):847–857

    Article  Google Scholar 

  22. Miller G, Reed R, Wheeler F (1991) Optimum Ackerman for improved steering axle tire wear on trucks, vol 912694, SAE technical paper. SAE, Warrendale

    Book  Google Scholar 

  23. Hunt KH (1978) Kinematic geometry of mechanisms. Oxford University Press, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, J., Feng, Z., Ma, N., Chu, F. (2014). Kinematic Design of Geared Five-Bar Linkage. In: Design of Special Planar Linkages. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38448-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38448-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38447-9

  • Online ISBN: 978-3-642-38448-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics