Advertisement

Grundzüge der Operationstechnik

  • Carsten O. TibeskuEmail author
Chapter

Zusammenfassung

Das Kapitel beinhaltet die wichtigsten Prinzipien der Operationstechnik eines Oberflächenersatzes am Kniegelenk. Verschiedene Optionen der aktuellen Systeme werden mit ihren Vor- und Nachteilen beschrieben. Hierzu zählen intra- und extramedulläre Ausrichtung, Ausrichtung der tibialen und femoralen Komponenten in Bezug auf Varus/Valgus, Flexion/Slope und Rotation, jeweils mit den gebräuchlichsten anatomischen Landmarken. Die konkurrierenden Operationssequenzen „tibia first“ und „femur first“ werden miteinander verglichen. Darüber hinaus werden die patientenspezifischen Instrumentarien und Implantate, die verschiedenen Kopplungsgrade in Abhängigkeit der vorhandenen Bänder, die operativen Techniken des Patellarückflächenersatzes und das Balancing des Patellofemoralgelenks beschrieben. Abschließend werden die Verankerung (zementiert und zementfrei) und das sog. „ligament balancing“ dargestellt.

Literatur

Zu Kap. 7.1

  1. Akagi M et al (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–6PubMedGoogle Scholar
  2. AraboriM et al (2008) Posterior condylar offset and flexion in posterior cruciate-retaining and posterior stabilized TKA. J Orthop Sci 13(1):46–50Google Scholar
  3. Baldini A, Adravanti P (2008) Less invasive TKA: extramedullary femoral reference without navigation. Clin Orthop Relat Res 466(11):2694–700PubMedCentralPubMedGoogle Scholar
  4. Bellemans J (2011) Neutral mechanical alignment: a requirement for successful TKA: opposes. Orthopedics 34(9):e507–e509PubMedGoogle Scholar
  5. Berend ME et al (2004) Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res 428:26–34PubMedGoogle Scholar
  6. BindelglassDF (2001) Rotational alignment of the tibial component in total knee arthroplasty. Orthopedics 24(11):1049–1051 (discussion 1051-2)Google Scholar
  7. Blakeney WG, Khan RJ, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 93(15):1377–1384PubMedGoogle Scholar
  8. Bong MR, Di Cesare PE (2004) Stiffness after total knee arthroplasty. J Am Acad Orthop Surg 12(3):164–71PubMedGoogle Scholar
  9. Brys DA et al (1991) A comparison of intramedullary and extramedullary alignment systems for tibial component placement in total knee arthroplasty. Clin Orthop Relat Res 263:175–179PubMedGoogle Scholar
  10. Cinotti G et al (2013) Influence of cartilage and menisci on the sagittal slope of the tibial plateaus. Clin Anat 26(7):883–92Google Scholar
  11. Cobb JP et al (2008) The anatomical tibial axis: reliable rotational orientation in knee replacement. J Bone Joint Surg Br 90(8):1032–1038PubMedGoogle Scholar
  12. Dennis DA et al (1993) Intramedullary versus extramedullary tibial alignment systems in total knee arthroplasty. J Arthroplasty 8(1):43–47PubMedGoogle Scholar
  13. Dorr LD et al (1989) Fat emboli in bilateral total knee arthroplasty. Predictive factors for neurologic manifestations. Clin Orthop Relat Res (248):112–118; discussion 118-9Google Scholar
  14. Eckhoff DG, Metzger RG, Vandewalle MV (1995) Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop Relat Res 321:28–31PubMedGoogle Scholar
  15. Engh GA, Petersen TL (1990) Comparative experience with intramedullary and extramedullary alignment in total knee arthroplasty. J Arthroplasty 5(1):1–8PubMedGoogle Scholar
  16. Gujarathi N et al (2009) Risk of periprosthetic fracture after anterior femoral notching. Acta Orthop 80(5):553–6PubMedCentralPubMedGoogle Scholar
  17. Han HS et al (2008) Evaluation of anatomic references for tibial sagittal alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 16(4):373–377PubMedGoogle Scholar
  18. Hanada H et al (2007) Bone landmarks are more reliable than tensioned gaps in TKA component alignment. Clin Orthop Relat Res 462:137–142PubMedGoogle Scholar
  19. Howell SM et al (2010) Longitudinal shapes of the tibia and femur are unrelated and variable. Clin Orthop Relat Res 468(4):1142–1148PubMedCentralPubMedGoogle Scholar
  20. Huddleston JI, Scott RD, Wimberley DW (2005) Determination of neutral tibial rotational alignment in rotating platform TKA. Clin Orthop Relat Res 440:101–106PubMedGoogle Scholar
  21. Incavo SJ et al (2003) Anatomic rotational relationships of the proximal tibia, distal femur, and patella: implications for rotational alignment in total knee arthroplasty. J Arthroplasty 18(5):643–8PubMedGoogle Scholar
  22. Incavo SJ, Coughlin KM, Beynnon BD (2004) Femoral component sizing in total knee arthroplasty: size matched resection versus flexion space balancing. J Arthroplasty 19(4):493–7PubMedGoogle Scholar
  23. Ishii Y et al (1995) Extramedullary versus intramedullary alignment guides in total knee arthroplasty. Clin Orthop Relat Res 318:167–175PubMedGoogle Scholar
  24. Jeon SH et al (2012) Efficacy of extramedullary femoral component alignment guide system for blood saving after total knee arthroplasty. Knee Surg Relat Res 24(2):99–103PubMedCentralPubMedGoogle Scholar
  25. Jia YT et al (2012) Does mismatch of the femoral component aspect ratio influence the range of knee flexion after posterior-stabilized total knee arthroplasty? Chin J Traumatol 15(3):152–157PubMedGoogle Scholar
  26. Jung WH et al (2013) The accuracy of the extramedullary and intramedullary femoral alignment system in total knee arthroplasty for varus osteoarthritic knee. Knee Surg Sports Traumatol Arthrosc 21(3):629–635PubMedGoogle Scholar
  27. Kawahara S et al (2012) Upsizing the femoral component increases patellofemoral contact force in total knee replacement. J Bone Joint Surg Br 94(1):56–61PubMedGoogle Scholar
  28. Kwak DS, Han CW, Han SH (2010) Tibial intramedullary canal axis and its influence on the intramedullary alignment system entry point in Koreans. Anat Cell Biol 43(3):260–267PubMedCentralPubMedGoogle Scholar
  29. Laskin RS (2003) Instrumentation pitfalls: you just can’t go on autopilot! J Arthroplasty 18(3 Suppl 1):18–22PubMedGoogle Scholar
  30. Laskin RS, Beksac B (2004) Stiffness after total knee arthroplasty. J Arthroplasty 19(4 Suppl 1):41–46PubMedGoogle Scholar
  31. Lemaire P et al (1997) Tibial component positioning in total knee arthroplasty: bone coverage and extensor apparatus alignment. Knee Surg Sports Traumatol Arthrosc 5(4):251–257PubMedGoogle Scholar
  32. Lombardi AV Jr, Berend KR, Ng VY (2011) Neutral mechanical alignment: a requirement for successful TKA: affirms. Orthopedics 34(9):e504–e506PubMedGoogle Scholar
  33. Lozano LM et al (2008) Intramedullary versus extramedullary tibial cutting guide in severely obese patients undergoing total knee replacement: a randomized study of 70 patients with body mass index >35 kg/m2. Obes Surg 18(12):1599–1604PubMedGoogle Scholar
  34. Lutzner J et al (2010) Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57PubMedCentralPubMedGoogle Scholar
  35. Mahoney OM, Kinsey T (2010) Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences. J Bone Joint Surg Am 92(5):1115–1121PubMedGoogle Scholar
  36. Mont MA et al (1995) Radiographic characterization of aseptically loosened cementless total knee replacement. Clin Orthop Relat Res 321:73–78PubMedGoogle Scholar
  37. Nakahara H et al (2012) Sagittal Cutting Error Changes Femoral Anteroposterior Sizing in Total Knee Arthroplasty. Clin Orthop Relat Res 470(12):3560–5Google Scholar
  38. Nuno-Siebrecht N, Tanzer M, Bobyn JD (2000) Potential errors in axial alignment using intramedullary instrumentation for total knee arthroplasty. J Arthroplasty 15(2):228–230PubMedGoogle Scholar
  39. Parratte S et al (2010) Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. Bone J Joint Surg Am 92(12):2143–2149Google Scholar
  40. Ritter MA et al (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156PubMedGoogle Scholar
  41. Ritter MA et al (2005) The effect of femoral notching during total knee arthroplasty on the prevalence of postoperative femoral fractures and on clinical outcome. Bone J Joint Surg Am 87(11):2411–2414Google Scholar
  42. Rottman SJ, Dvorkin M, Gold D (2005) Extramedullary versus intramedullary tibial alignment guides for total knee arthroplasty. Orthopedics 28(12):1445–1448PubMedGoogle Scholar
  43. Servien E et al (2008) Lateral versus medial tibial plateau: morphometric analysis and adaptability with current tibial component design. Knee Surg Sports Traumatol Arthrosc 16(12):1141–1145PubMedGoogle Scholar
  44. Shi X et al (2012) The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(12):2696–703Google Scholar
  45. Teter KE, Bregman D, Colwell CW Jr (1995) Accuracy of intramedullary versus extramedullary tibial alignment cutting systems in total knee arthroplasty. Clin Orthop Relat Res 321:106–110PubMedGoogle Scholar
  46. Tsukeoka T, Lee TH (2012) Sagittal flexion of the femoral component affects flexion gap and sizing in total knee arthroplasty. J Arthroplasty 27(6):1094–1099PubMedGoogle Scholar
  47. Uehara K et al (2002) Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 402:196–201PubMedGoogle Scholar
  48. Utzschneider S et al (2011) Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc 19(10):1643–1648PubMedGoogle Scholar
  49. Victor J (2009) Rotational alignment of the distal femur: a literature review. Orthop Traumatol Surg Res 95(5):365–372PubMedGoogle Scholar
  50. Wangroongsub Y, Cherdtaweesup S (2009) Proper entry point for femoral intramedullary guide in total knee arthroplasty. J Med Assoc Thai 92(6):1–5Google Scholar
  51. Wevers HW et al (1994) Improved fit by asymmetric tibial prosthesis for total knee arthroplasty. Med Eng Phys 16(4):297–300PubMedGoogle Scholar
  52. Yang SH, Liu TK (1998) Intramedullary versus extramedullary tibial alignment guides in total knee arthroplasty. J Formos Med Assoc 97(8):564–568PubMedGoogle Scholar
  53. Zalzal P et al (2006) Notching of the anterior femoral cortex during total knee arthroplasty characteristics that increase local stresses. J Arthroplasty 21(5):737–743PubMedGoogle Scholar

Zu Kap. 7.2.1 und 7.2.2

  1. Dennis DA (2008) Measured resection: an outdated technique in total knee arthroplasty. Orthopedics 31(9):943–4Google Scholar
  2. Hanada H et al (2007) Bone landmarks are more reliable than tensioned gaps in TKA component alignment. Clin Orthop Relat Res 462:137–42PubMedGoogle Scholar
  3. Hungerford DS (2008) Measured resection: a valuable tool in TKA. Orthopedics 31(9):941–942PubMedGoogle Scholar
  4. Incavo SJ, Coughlin KM, Beynnon BD (2004) Femoral component sizing in total knee arthroplasty: size matched resection versus flexion space balancing. J Arthroplasty 19(4):493–497PubMedGoogle Scholar
  5. Manson TT et al (2009) Sagittal plane balancing in the total knee arthroplasty. J Surg Orthop Adv 18(2):83–92PubMedGoogle Scholar
  6. Poilvache PL et al (1996) Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop Relat Res 331:35–46PubMedGoogle Scholar

Zu Kap. 7.2.3

  1. Bauwens K, Matthes G, Wich M, Gebhard F, Hanson B, Ekkernkamp A et al (2007) Navigated total knee replacement. A meta-analysis. J Bone Joint Surg Am 89(2):261–269PubMedGoogle Scholar
  2. Cheng T, Zhang G, Zhang X (2011) Imageless navigation system does not improve component rotational alignment in total knee arthroplasty. J Surg Res 171(2):590–600PubMedGoogle Scholar
  3. Daniilidis K, Tibesku CO (2013) Frontal plane alignment after total knee arthroplasty using patient-specific instruments. Int Orthop 37(1):45–50PubMedCentralPubMedGoogle Scholar
  4. Dattani R, Patnaik S, Kantak A, Tselentakis G (2009) Navigation knee replacement. Int Orthop 33(1):7–10PubMedCentralPubMedGoogle Scholar
  5. Heyse TJ, Tibesku CO (2014) Improved femoral component rotation in TKA using patient-specific instrumentation. Knee 21(1):268–71Google Scholar
  6. Iorio R, Bolle G, Conteduca F, Valeo L, Conteduca J, Mazza D et al (2013) Accuracy of manual instrumentation of tibial cutting guide in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(10):2296–300Google Scholar
  7. Jerosch J, Peuker E, Philipps B, Filler T (2002) Interindividual reproducibility in perioperative rotational alignment of femoral components in knee prosthetic surgery using the transepicondylar axis. Knee Surg Sports Traumatol Arthrosc 10(3):194–197PubMedGoogle Scholar
  8. Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C (2007) A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am 89(2):236–243PubMedGoogle Scholar
  9. Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr (2012) Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res 470(1):99–107PubMedCentralPubMedGoogle Scholar
  10. Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL (2012) Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res 470(3):895–902PubMedCentralPubMedGoogle Scholar
  11. Tibesku CO, Innocenti B, Wong P, Salehi A, Labey L (2012) Can CT-based patient-matched instrumentation achieve consistent rotational alignment in knee arthroplasty? Arch Orthop Trauma Surg 132(2):171–177PubMedGoogle Scholar
  12. Tibesku CO, Hofer P, Portegies W, Ruys CJ, Fennema P (2013) Benefits of using customized instrumentation in total knee arthroplasty: results from an activity-based costing model. Arch Orthop Trauma Surg 133(3):405–411PubMedGoogle Scholar

Zu Kap. 7.3

  1. Abdel MP et al (2011) Increased long-term survival of posterior cruciate-retaining versus posterior cruciate-stabilizing total knee replacements. J Bone Joint Surg Am 93(22):2072–2078PubMedGoogle Scholar
  2. Arabori M et al (2008) Posterior condylar offset and flexion in posterior cruciate-retaining and posterior stabilized TKA. J Orthop Sci 13(1):46–50PubMedGoogle Scholar
  3. Arnout N, Vandenneucker H, Bellemans J (2011) Posterior dislocation in total knee replacement: a price for deep flexion? Knee Surg Sports Traumatol Arthrosc 19(6):911–3PubMedGoogle Scholar
  4. Athwal KK et al (2013) Clinical biomechanics of instability related to total knee arthroplasty. Clin Biomech (Bristol, Avon) 29(2):119–28Google Scholar
  5. Australian Orthopaedic Association (2012) National Joint Replacement Registry, Annual ReportGoogle Scholar
  6. Becher C et al (2009) Posterior stabilized TKA reduce patellofemoral contact pressure compared with cruciate retaining TKA in vitro. Knee Surg Sports Traumatol Arthrosc 17(10):1159–65PubMedGoogle Scholar
  7. Bellemans J et al (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84(1):50–3PubMedGoogle Scholar
  8. Bellemans J et al (2005) The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 13(3):193–196PubMedGoogle Scholar
  9. Bercik MJ, Joshi A, Parvizi J (2013) Posterior cruciate-retaining versus posterior-stabilized total knee arthroplasty: a meta-analysis. J Arthroplasty 28(3):439–444PubMedGoogle Scholar
  10. Cloutier JM (1983) Results of total knee arthroplasty with a non-constrained prosthesis. J Bone Joint Surg Am 65(7):906–919PubMedGoogle Scholar
  11. Cloutier JM, Sabouret P, Deghrar A (1999) Total knee arthroplasty with retention of both cruciate ligaments. A nine to eleven-year follow-up study. J Bone Joint Surg Am 81(5):697–702PubMedGoogle Scholar
  12. Coventry MB et al (1972) A new geometric knee for total knee arthroplasty. Clin Orthop Relat Res 83:157–62PubMedGoogle Scholar
  13. Daniilidis K et al (2012) Highly conforming polyethylene inlays reduce the in vivo variability of knee joint kinematics after total knee arthroplasty. Knee 19(4):260–265PubMedGoogle Scholar
  14. van Duren BH et al (2012) Bicruciate substituting total knee replacement: how effective are the added kinematic constraints in vivo? Knee Surg Sports Traumatol Arthrosc 20(10):2002–2010PubMedGoogle Scholar
  15. Dutka J et al (2012) Total knee arthroplasty with application of anatomic endoprosthesis journey. Clinical and radiological assessment in a 2-year follow-up. Pol Orthop Traumatol 77:1–4PubMedGoogle Scholar
  16. Fantozzi S et al (2006) Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: in vivo fluoroscopic analysis during activities of daily living. J Orthop Res 24(12):2222–2229PubMedGoogle Scholar
  17. Fisher J et al (2010) 2009 Knee Society Presidential Guest Lecture: Polyethylene wear in total knees. Clin Orthop Relat Res 468(1):12–8PubMedCentralPubMedGoogle Scholar
  18. Fuchs S et al (2005) Clinical and functional comparison of uni- and bicondylar sledge prostheses. Knee Surg Sports Traumatol Arthrosc 13(3):197–202PubMedGoogle Scholar
  19. Galvin AL et al (2009) Effect of conformity and contact stress on wear in fixed-bearing total knee prostheses. J Biomech 42(12):1898–1902PubMedGoogle Scholar
  20. Girard J et al (2009) Total knee arthroplasty in valgus knees: predictive preoperative parameters influencing a constrained design selection. Orthop Traumatol Surg Res 95(4):260–266PubMedGoogle Scholar
  21. Gunston FH (1971) Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J Bone Joint Surg Br 53(2):272–277PubMedGoogle Scholar
  22. Gustke KA (2005) Preoperative planning for revision total knee arthroplasty:avoiding chaos. J Arthroplasty 20(4 Suppl 2):37–40PubMedGoogle Scholar
  23. Haider H, Walker PS (2005) Measurements of constraint of total knee replacement. J Biomech 38(2):341–348PubMedGoogle Scholar
  24. Heesterbeek P et al (2010) Posterior cruciate ligament recruitment affects antero-posterior translation during flexion gap distraction in total knee replacement. An intraoperative study involving 50 patients. Acta Orthop 81(4):471–477PubMedCentralPubMedGoogle Scholar
  25. Heyse TJ et al (2010) Quadriceps force in relation of intrinsic anteroposterior stability of TKA design. Arch Orthop Trauma Surg 130(1):1–9PubMedGoogle Scholar
  26. Huang CH et al (2002) Osteolysis in failed total knee arthroplasty: a comparison of mobile-bearing and fixed-bearing knees. J Bone Joint Surg Am 84-A(12):2224–2229PubMedGoogle Scholar
  27. Ishii Y et al (2011) Effect of voluntary soft tissue tension and articular conformity after total knee arthroplasty on in vivo anteroposterior displacement. Knee 18(1):11–14PubMedGoogle Scholar
  28. Jacobs WC, Clement DJ, Wymenga AB (2005a) Retention versus sacrifice of the posterior cruciate ligament in total knee replacement for treatment of osteoarthritis and rheumatoid arthritis. Cochrane Database Syst Rev 4:CD004803PubMedGoogle Scholar
  29. Jacobs WC, Clement DJ, Wymenga AB (2005b) Retention versus removal of the posterior cruciate ligament in total knee replacement: a systematic literature review within the Cochrane framework. Acta Orthop 76(6):757–68PubMedGoogle Scholar
  30. Krackow KA, Thomas SC, Jones LC (1986) A new stitch for ligament-tendon fixation. Brief note. J Bone Joint Surg Am 68(5):764–766PubMedGoogle Scholar
  31. Krackow KA, Thomas SC, Jones LC (1988) Ligament-tendon fixation: analysis of a new stitch and comparison with standard techniques. Orthopedics 11(6):909–917PubMedGoogle Scholar
  32. Laskin RS et al (2000) Deep-dish congruent tibial component use in total knee arthroplasty: a randomized prospective study. Clin Orthop Relat Res 380:36–44PubMedGoogle Scholar
  33. Lattanzio PJ, Chess DG, MacDermid JC (1998) Effect of the posterior cruciate ligament in knee-joint proprioception in total knee arthroplasty. J Arthroplasty 13(5):580–585PubMedGoogle Scholar
  34. Lombardi AV Jr, Berend KR (2006) Posterior cruciate ligament-retaining, posterior stabilized, and varus/valgus posterior stabilized constrained articulations in total knee arthroplasty. Instr Course Lect 55:419–427PubMedGoogle Scholar
  35. Matziolis G et al (2012) How much of the PCL is really preserved during the tibial cut? Knee Surg Sports Traumatol Arthrosc 20(6):1083–1086PubMedGoogle Scholar
  36. McAuley JP, Engh GA (2003) Constraint in total knee arthroplasty: when and what? J Arthroplasty 18(3 Suppl 1):51–4PubMedGoogle Scholar
  37. Moro-oka TA et al (2007) Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 15(1):93–99PubMedGoogle Scholar
  38. Mugnai R et al (2014) Can TKA design affect the clinical outcome? Comparison between two guided-motion systems. Knee Surg Sports Traumatol Arthrosc 22(3):581–9Google Scholar
  39. Mulhall KJ et al (2006) Current etiologies and modes of failure in total knee arthroplasty revision. Clin Orthop Relat Res 446:45–50PubMedGoogle Scholar
  40. Naudie DD, Rorabeck CH (2004) Managing instability in total knee arthroplasty with constrained and linked implants. Instr Course Lect 53:207–215PubMedGoogle Scholar
  41. Pagnano MW et al (2004) Rotating platform knees did not improve patellar tracking: a prospective, randomized study of 240 primary total knee arthroplasties. Clin Orthop Relat Res (428):221–227Google Scholar
  42. Pritsch M, Fitzgerald RH Jr, Bryan RS (1984) Surgical treatment of ligamentous instability after total knee arthroplasty. Arch Orthop Trauma Surg 102(3):154–158PubMedGoogle Scholar
  43. Riley D, Woodyard JE (1985) Long-term results of Geomedic total knee replacement. J Bone Joint Surg Br 67(4):548–550PubMedGoogle Scholar
  44. Scott RD, Thornhill TS (1994) Posterior cruciate supplementing total knee replacement using conforming inserts and cruciate recession. Effect on range of motion and radiolucent lines. Clin Orthop Relat Res 309:146–149PubMedGoogle Scholar
  45. Sculco TP (2006) The role of constraint in total knee arthoplasty. J Arthroplasty 21(4 Suppl 1):54–56PubMedGoogle Scholar
  46. Sharkey PF et al (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13PubMedGoogle Scholar
  47. Victor J et al (2010) In vivo kinematics after a cruciate-substituting TKA. Clin Orthop Relat Res 468(3):807–814PubMedCentralPubMedGoogle Scholar
  48. Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. Bone J Joint Surg Br 87(5):646–55Google Scholar
  49. Vince KG, Abdeen A, Sugimori T (2006) The unstable total knee arthroplasty: causes and cures. J Arthroplasty 21(4 Suppl 1):44–49PubMedGoogle Scholar
  50. van der Voort P et al (2013) A systematic review and meta-regression of mobile-bearing versus fixed-bearing total knee replacement in 41 studies. J Bone Joint 95-B(9):1209–1216Google Scholar
  51. Walker PS et al (2009) Design features of total knees for achieving normal knee motion characteristics. J Arthroplasty 24(3):475–483PubMedGoogle Scholar
  52. Watanabe T et al (2013) Knee kinematics in anterior cruciate ligament-substituting arthroplasty with or without the posterior cruciate ligament. J Arthroplasty 28(4):548–552PubMedGoogle Scholar
  53. Zelle J et al (2010) Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys 32(7):700–707PubMedGoogle Scholar

Zu Kap. 7.4

  1. Alcelik I et al (2012) Comparing the mid-vastus and medial parapatellar approaches in total knee arthroplasty: a meta-analysis of short term outcomes. Knee 19(4):229–236PubMedGoogle Scholar
  2. Altay MA et al (2012) Patellar denervation in total knee arthroplasty without patellar resurfacing: a prospective, randomized controlled study. Orthop Traumatol Surg Res 98(4):421–425PubMedGoogle Scholar
  3. Asada S et al (2008) Medial patellofemoral ligament reconstruction for recurrent patellar dislocation after total knee arthroplasty. J Orthop Sci 13(3):255–258PubMedGoogle Scholar
  4. Baliga S et al (2012) Does circumpatellar electrocautery improve the outcome after total knee replacement?: a prospective, randomised, blinded controlled trial. Bone J Joint Surg Br 94(9):1228–1233Google Scholar
  5. Becher C et al (2009) Posterior stabilized TKA reduce patellofemoral contact pressure compared with cruciate retaining TKA in vitro. Knee Surg Sports Traumatol Arthrosc 17(10):1159–1165PubMedGoogle Scholar
  6. Bell SW et al (2014) Component rotational alignment in unexplained painful primary total knee arthroplasty. Knee 21(1):272–7Google Scholar
  7. Benjamin J, Chilvers M (2006) Correcting lateral patellar tilt at the time of total knee arthroplasty can result in overuse of lateral release. J Arthroplasty 21(6 Suppl 2):121–126PubMedGoogle Scholar
  8. Berger RA et al (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153PubMedGoogle Scholar
  9. Bertin KC, Lloyd WW (2013) Effect of total knee prosthesis design on patellar tracking and need for lateral retinacular release. J Arthroplasty 28(5):772–777PubMedGoogle Scholar
  10. Cameron HU (1991) Comparison between patellar resurfacing with an inset plastic button and patelloplasty. Can J Surg 34(1):49–52PubMedGoogle Scholar
  11. Chonko DJ, Lombardi AV Jr, Berend KR (2004) Patella baja and total knee arthroplasty (TKA): etiology, diagnosis, and management. Surg Technol Int 12:231–238PubMedGoogle Scholar
  12. Drexler M et al (2013) Total knee arthroplasty in patients with excessive external tibial torsion >45 degrees and patella instability--surgical technique and follow up. J Arthroplasty 28(4):614–619PubMedGoogle Scholar
  13. Erturk C, Altay MA, Isikan UE (2011) Patelloplasty with patellar decompression to relieve anterior knee pain in total knee arthroplasty. Acta Orthop Traumatol Turc 45(6):425–430PubMedGoogle Scholar
  14. Fehring TK et al (2001) Early failures in total knee arthroplasty. Clin Orthop Relat Res 392:315–318PubMedGoogle Scholar
  15. Feller JA (2012) Distal realignment (tibial tuberosity transfer). Sports Med Arthrosc 20(3):152–161PubMedGoogle Scholar
  16. Fern ED, Winson IG, Getty CJ (1992) Anterior knee pain in rheumatoid patients after total knee replacement. Possible selection criteria for patellar resurfacing. Bone J Joint Surg Br 74(5):745–748Google Scholar
  17. Ficat RP et al (1979) Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res 144:74–83PubMedGoogle Scholar
  18. Freiling D, Galla M, Lobenhoffer P (2006) Arthrolysis for chronic flexion deficits of the knee. An overview of indications and techniques of vastus intermedius muscle resection, transposition of the tibial tuberosity and z-plasty of the patellar tendon. Unfallchirurg 109(4):285–296PubMedGoogle Scholar
  19. Frosch S et al (2011) The treatment of patellar dislocation: a systematic review. Z Orthop Unfall 149(6):630–645PubMedGoogle Scholar
  20. van Gennip S et al (2014) Medial patellofemoral ligament reconstruction for patellar maltracking following total knee arthroplasty is effective. Knee Surg Sports Traumatol Arthrosc 22(10):2569–73Google Scholar
  21. Gupta S et al (2010) Electrocautery of the patellar rim in primary total knee replacement: beneficial or unnecessary? J Bone Joint Surg Br 92(9):1259–1261PubMedGoogle Scholar
  22. Helmy N et al (2008) To resurface or not to resurface the patella in total knee arthroplasty. Clin Orthop Relat Res 466(11):2775–2783PubMedCentralPubMedGoogle Scholar
  23. Heyse TJ et al (2010) Quadriceps force in relation of intrinsic anteroposterior stability of TKA design. Arch Orthop Trauma Surg 130(1):1–9PubMedGoogle Scholar
  24. Hofmann S et al (2003) Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopäde 32(6):469–76PubMedGoogle Scholar
  25. Holt GE, Dennis DA (2003) The role of patellar resurfacing in total knee arthroplasty. Clin Orthop Relat Res 416:76–83PubMedGoogle Scholar
  26. Hu X et al (2013) A meta-analysis of the sub-vastus approach and medial parapatellar approach in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(10):2398–404Google Scholar
  27. van Jonbergen HP et al (2011) A randomised, controlled trial of circumpatellar electrocautery in total knee replacement without patellar resurfacing. J Bone Joint Surg Br 93(8):1054–1059PubMedGoogle Scholar
  28. Kazemi SM et al (2011) Pseudo-patella baja after total knee arthroplasty. Med Sci Monit 17(5):CR292-6PubMedGoogle Scholar
  29. Lee GW et al (2013) The efficacy of patellar decompression for improving anterior knee pain following total knee arthroplasty without patellar resurfacing. Arch Orthop Trauma Surg 133(4):561–567PubMedGoogle Scholar
  30. Lindstrand A et al (2001) The patella in total knee arthroplasty: resurfacing or nonresurfacing of patella. Knee Surg Sports Traumatol Arthrosc 9(1):S21–S23PubMedGoogle Scholar
  31. Maeno S et al (2006) Patellar impingement against the tibial component after total knee arthroplasty. Clin Orthop Relat Res 452:265–269PubMedGoogle Scholar
  32. Meneghini RM (2008) Should the patella be resurfaced in primary total knee arthroplasty? An evidence-based analysis. J Arthroplasty 23(7):11–14PubMedGoogle Scholar
  33. Merkow RL, Soudry M, Insall JN (1985) Patellar dislocation following total knee replacement. J BoneJoint Surg Am 67(9):1321–1327Google Scholar
  34. Merican AM et al (2014) Patellar thickness and lateral retinacular release affects patellofemoral kinematics in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(3):526–33Google Scholar
  35. Misra AN, Smith RB, Fiddian NJ (2003) Five year results of selective patellar resurfacing in cruciate sparing total knee replacements. Knee 10(2):199–203PubMedGoogle Scholar
  36. Muoneke HE et al (2003) Secondary resurfacing of the patella for persistent anterior knee pain after primary knee arthroplasty. J Bone Joint Surg Br 85(5):675–678PubMedGoogle Scholar
  37. Nakajima A et al (2010) The Elmslie-Trillat procedure for recurrent patellar subluxation after total knee arthroplasty. J Arthroplasty 25(7):1170 e1-5PubMedGoogle Scholar
  38. Nelissen RG, Weidenheim L, Mikhail WE (1995) The influence of the position of the patellar component on tracking in total knee arthroplasty. Int Orthop 19(4):224–228PubMedGoogle Scholar
  39. Nizard RS et al (2005) A meta-analysis of patellar replacement in total knee arthroplasty. Clin Orthop Relat Res 432:196–203PubMedGoogle Scholar
  40. Park SJ et al (2010) Long-term results of primary total knee arthroplasty with and without patellar resurfacing. Acta Med Okayama 64(5):331–338PubMedGoogle Scholar
  41. Ritter MA et al (1996) Patellofemoral complications following total knee arthroplasty. Effect of a lateral release and sacrifice of the superior lateral geniculate artery. J Arthroplasty 11(4):368–372PubMedGoogle Scholar
  42. Rosenstein AD, Postak, Greenwald AS (2007) Fixation strength comparison of onlay and inset patellar implants. Knee 14(3):194–197PubMedGoogle Scholar
  43. Schindler OS (2012) The controversy of patellar resurfacing in total knee arthroplasty: Ibisne in medio tutissimus? Knee Surg Sports Traumatol Arthrosc 20(7):1227–1244PubMedCentralPubMedGoogle Scholar
  44. Shaw JA (2003) Patellar retinacular peel: an alternative to lateral retinacular release in total knee arthroplasty. Am J Orthop (Belle Mead NJ) 32(4):189–192Google Scholar
  45. Strachan RK et al (2009) A technique of staged lateral release to correct patellar tracking in total knee arthroplasty. J Arthroplasty 24(5):735–742PubMedGoogle Scholar
  46. Swan JD et al (2010) The need for patellar resurfacing in total knee arthroplasty: a literature review. ANZ J Surg 80(4):223–233PubMedGoogle Scholar
  47. Wachtl SW, Jakob RP (2000) Patella osteotomy for lateral retinaculum decompression in total knee arthroplasty. Acta Orthop Scand 71(5):522–524PubMedGoogle Scholar
  48. Weber AB et al (2003) The consequences of lateral release in total knee replacement: a review of over 1000 knees with follow up between 5 and 11 years. Knee 10(2):187–191PubMedGoogle Scholar

Zu Kap. 7.5

  1. Baleani M et al (2003) Fatigue strength of PMMA bone cement mixed with gentamicin and barium sulphate vs pure PMMA. Proc Inst Mech Eng H 217(1):9–12PubMedGoogle Scholar
  2. Barrack RL et al (2004) The effect of stem design on end-of-stem pain in revision total knee arthroplasty. J Arthroplasty 19(7 Suppl 2):119–124PubMedGoogle Scholar
  3. Bert JM, McShane M (1998) Is it necessary to cement the tibial stem in cemented total knee arthroplasty? Clin Orthop Relat Res 356:73–8PubMedGoogle Scholar
  4. Bottner F et al (2006) Hybrid component fixation in revision total knee arthroplasty. Clin Orthop Relat Res 446:127–131PubMedGoogle Scholar
  5. Bourne RB, Finlay JB (1986) The influence of tibial component intramedullary stems and implant-cortex contact on the strain distribution of the proximal tibia following total knee arthroplasty. An in vitro study. Clin Orthop Relat Res 208:95–9PubMedGoogle Scholar
  6. Breusch SJ, Kuhn KD (2003) Bone cements based on polymethylmethacrylate. Orthopäde 32(1):41–50PubMedGoogle Scholar
  7. Breusch SJ et al (2001) Significance of jet lavage for in vitro and in vivo cement penetration. Z Orthop Ihre Grenzgeb 139(1):52–63PubMedGoogle Scholar
  8. Campbell MD, Duffy GP, Trousdale RT (1998) Femoral component failure in hybrid total knee arthroplasty. Clin Orthop Relat Res 356:58–65PubMedGoogle Scholar
  9. Chiu FY et al (2002) Cefuroxime-impregnated cement in primary total knee arthroplasty: a prospective, randomized study of three hundred and forty knees. J Bone Joint Surg Am 84-A(5):759–762PubMedGoogle Scholar
  10. Chon JG, Lombardi AV Jr, Berend KR (2004) Hybrid stem fixation in revision total knee arthroplasty (TKA). Surg Technol Int 12:214–220PubMedGoogle Scholar
  11. Clarius M et al (2009) Pulsed lavage reduces the incidence of radiolucent lines under the tibial tray of Oxford unicompartmental knee arthroplasty: pulsed lavage versus syringe lavage. Int Orthop 33(6):1585–1590PubMedCentralPubMedGoogle Scholar
  12. Clarius M et al (2010) Femoral fixation pattern in cemented Oxford unicompartmental knee arthroplasty--an experimental cadaver study. Knee 17(6):398–402PubMedGoogle Scholar
  13. Conditt MA et al (2004) The optimal strategy for stable tibial fixation in revision total knee arthroplasty. J Arthroplasty 19(7 Suppl 2):113–118PubMedGoogle Scholar
  14. Diaz-Borjon E et al (2004) Cement penetration using a tibial punch cement pressurizer in total knee arthroplasty. Orthopedics 27(5):500–503PubMedGoogle Scholar
  15. Dorr LD et al (1984) Factors influencing the intrusion of methylmethacrylate into human tibiae. Clin Orthop Relat Res 183:147–152PubMedGoogle Scholar
  16. Drexler M et al (2012) Cementless fixation in total knee arthroplasty: down the boulevard of broken dreams - opposes. J Bone Joint Surg Br 94(11 Suppl A):85–89PubMedGoogle Scholar
  17. Efe T et al (2011aa) Initial stability of tibial components in primary knee arthroplasty. A cadaver study comparing cemented and cementless fixation techniques. Acta Orthop Belg 77(3):320–328PubMedGoogle Scholar
  18. Efe T et al (2011b) Revision of tibial TKA components: bone loss is independent of cementing type and technique: an in vitro cadaver study. BMC Musculoskelet Disord 12:6PubMedCentralPubMedGoogle Scholar
  19. Engesaeter LB et al (2003) Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0-14 years in the Norwegian Arthroplasty Register. Acta Orthop Scand 74(6):644–651PubMedGoogle Scholar
  20. Eveillard M et al (2003) Effectiveness of gentamicin-impregnated cement in the prevention of deep wound infection after primary total knee arthroplasty. Infect Control Hosp Epidemiol 24(10):778–780PubMedGoogle Scholar
  21. Gandhi R et al (2009) Survival and clinical function of cemented and uncemented prostheses in total knee replacement: a meta-analysis. Bone J Joint Surg Br 91(7):889–895Google Scholar
  22. Gravius S et al (2007) Mechanical in vitro testing of fifteen commercial bone cements based on polymethylmethacrylate. Z Orthop Unfall 145(5):579–585PubMedGoogle Scholar
  23. Haddad RJ Jr, Cook SD, Thomas KA (1987) Biological fixation of porous-coated implants. J Bone Joint Surg Am 69(9):1459–1466PubMedGoogle Scholar
  24. Hsu RW et al (1998) Hybrid total knee arthroplasty: a 3- to 6-year outcome analysis. J Formos Med Assoc 97(6):410–415PubMedGoogle Scholar
  25. Huddleston JI, Wiley JW, Scott RD (2005) Zone 4 femoral radiolucent lines in hybrid versus cemented total knee arthroplasties: are they clinically significant? Clin Orthop Relat Res (441):334–339Google Scholar
  26. Illgen R et al (2004) Hybrid total knee arthroplasty: a retrospective analysis of clinical and radiographic outcomes at average 10 years follow-up. J Arthroplasty 19(7 Suppl 2):95–100PubMedGoogle Scholar
  27. Jazrawi LM et al (2001) The effect of stem modularity and mode of fixation on tibial component stability in revision total knee arthroplasty. J Arthroplasty 16(6):759–767PubMedGoogle Scholar
  28. Josefsson G, Kolmert L (1993) Prophylaxis with systematic antibiotics versus gentamicin bone cement in total hip arthroplasty. A ten-year survey of 1,688 hips. Clin Orthop Relat Res 292:210–214PubMedGoogle Scholar
  29. Kilicoglu O et al (2008) Effect of antibiotic loading on the shear strength at the stem-cement interface (Shear strength of antibiotic loaded cement. Int Orthop 32(4):437–441PubMedCentralPubMedGoogle Scholar
  30. Kim JK, Koh YD, Kook SH (2011) Effect of calcium phosphate bone cement augmentation on volar plate fixation of unstable distal radial fractures in the elderly. Bone J Joint Surg Am 93(7):609–614Google Scholar
  31. Konig A et al (1998) Hybrid total knee arthroplasty. Arch Orthop Trauma Surg 118(1-2):66–69PubMedGoogle Scholar
  32. Kopec M et al (2009) Effect of hand packing versus cement gun pressurization on cement mantle in total knee arthroplasty. Can J Surg 52(6):490–494PubMedCentralPubMedGoogle Scholar
  33. Lewis G (1997) Properties of acrylic bone cement: state of the art review. J Biomed Mater Res 38(2):155–182PubMedGoogle Scholar
  34. Lombardi AV Jr, Berasi CC, Berend KR (2007) Evolution of tibial fixation in total knee arthroplasty. J Arthroplasty 22(4 Suppl 1):25–29PubMedGoogle Scholar
  35. Lutz MJ et al (2009) The effect of cement gun and cement syringe use on the tibial cement mantle in total knee arthroplasty. J Arthroplasty 24(3):461–467PubMedGoogle Scholar
  36. Lynch M et al (1987) Deep infection in Charnley low-friction arthroplasty. Comparison of plain and gentamicin-loaded cement. J Bone Joint Surg Br 69(3):355–360PubMedGoogle Scholar
  37. Parker DA, Rorabeck CH, Bourne RB (2001) Long-term followup of cementless versus hybrid fixation for total knee arthroplasty. Clin Orthop Relat Res 388:68–76PubMedGoogle Scholar
  38. Persson C et al (2006) Mechanical effects of the use of vancomycin and meropenem in acrylic bone cement. Acta Orthop 77(4):617–621PubMedGoogle Scholar
  39. Peters CL et al (2003) Tibial component fixation with cement: full- versus surface-cementation techniques. Clin Orthop Relat Res 409:158–168PubMedGoogle Scholar
  40. Pujol N, Verdot FX, Chambat P (2008) Quality of tibial cementing in total knee arthroplasty: one or two phase cementing of the tibial and femoral implants. Rev Chir Orthop Reparatrice Appar Mot 94(3):241–246PubMedGoogle Scholar
  41. Ranawat CS et al (2012) Cementless fixation in total knee arthroplasty: down the boulevard of broken dreams - affirms. J Bone Joint Surg Br 94(11 Suppl A):82–84PubMedGoogle Scholar
  42. Rand JA et al (2003) Factors affecting the durability of primary total knee prostheses. J Bone Joint Surg Am 85-A(2):259–265PubMedGoogle Scholar
  43. Robertsson O et al (2000) Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand 71(3):262–267PubMedGoogle Scholar
  44. Rorabeck CH (1999) Total knee replacement: should it be cemented or hybrid? Can J Surg 42(1):21–26PubMedCentralPubMedGoogle Scholar
  45. Rossi R et al (2010) No early tibial tray loosening after surface cementing technique in mobile-bearing TKA. Knee Surg Sports Traumatol Arthrosc 18(10):1360–1365PubMedGoogle Scholar
  46. Schlegel UJ et al (2011) Pulsed lavage improves fixation strength of cemented tibial components. Int Orthop 35(8):1165–1169PubMedCentralPubMedGoogle Scholar
  47. Schreurs BW et al (1988) Effects of preparation techniques on the porosity of acrylic cements. Acta Orthop Scand 59(4):403–409PubMedGoogle Scholar
  48. Seeger JB et al (2013) The effect of bone lavage on femoral cement penetration and interface temperature during oxford unicompartmental knee arthroplasty with cement. Bone J Joint Surg Am 95(1):48–53Google Scholar
  49. Skwara A et al (2009) Primary stability of tibial components in TKA: in vitro comparison of two cementing techniques. Knee Surg Sports Traumatol Arthrosc 17(10):1199–1205PubMedGoogle Scholar
  50. Thomas P et al (2008) Orthopedic surgical implants and allergies: joint statement by the implant allergy working group (AK 20) of the DGOOC (German association of orthopedics and orthopedic surgery), DKG (German contact dermatitis research group) and dgaki (German society for allergology and clinical immunology). Orthopäde 37(1):75–88PubMedGoogle Scholar
  51. Vaninbroukx M et al (2009) Cementing the femoral component in total knee arthroplasty: which technique is the best? Knee 16(4):265–268PubMedGoogle Scholar
  52. Vanlommel J et al (2011) Cementing the tibial component in total knee arthroplasty: which technique is the best? J Arthroplasty 26(3):492–496PubMedGoogle Scholar
  53. Vertullo CJ, Davey JR (2001) The effect of a tibial baseplate undersurface peripheral lip on cement penetration in total knee arthroplasty. J Arthroplasty 16(4):487–92PubMedGoogle Scholar
  54. Yoshii I et al (1992) The effect of central stem and stem length on micromovement of the tibial tray. J Arthroplasty 7:433–438PubMedGoogle Scholar

Zu Kap. 7.6

  1. Bellemans J (2011) Multiple needle puncturing: balancing the varus knee. Orthopedics 34(9):e510–e512PubMedGoogle Scholar
  2. Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470(1):45–53PubMedCentralPubMedGoogle Scholar
  3. Brilhault J, Lautman S, Favard L, Burdin P (2002) Lateral femoral sliding osteotomy lateral release in total knee arthroplasty for a fixed valgus deformity. J Bone Joint Surg Br 84(8):1131–1137PubMedGoogle Scholar
  4. Claus A, Scharf HP (2007) „Ligament balancing“ and varus deformity in total knee arthroplasty. Orthopäde 36(7):643–644 (6-9)PubMedGoogle Scholar
  5. Healy WL, Iorio R, Lemos DW (1998) Medial reconstruction during total knee arthroplasty for severe valgus deformity. Clin Orthop Relat Res 356:161–169PubMedGoogle Scholar
  6. Kuster MS, Bitschnau B, Votruba T (2004) Influence of collateral ligament laxity on patient satisfaction after total knee arthroplasty: a comparative bilateral study. Arch Orthop Trauma Surg 124(6):415–417PubMedGoogle Scholar
  7. Luring C, Hufner T, Kendoff D, Perlick L, Bathis H, Grifka J et al (2006) Eversion or subluxation of patella in soft tissue balancing of total knee arthroplasty? Results of a cadaver experiment. Knee 13(1):15–8PubMedGoogle Scholar
  8. Mihalko WM, Saleh KJ, Krackow KA, Whiteside LA (2009) Soft-tissue balancing during total knee arthroplasty in the varus knee. J Am Acad Orthop Surg 17(12):766–774PubMedGoogle Scholar
  9. Pape D, Kohn D (2007) Soft tissue balancing in valgus gonarthrosis. Orthopäde 36(7):657–658 (60-6)PubMedGoogle Scholar
  10. Whiteside LA (2002) Soft tissue balancing: the knee. J Arthroplasty 17(4 Suppl 1):23–27PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Knieendoprothetiksporthopaedicum StraubingStraubingDeutschland

Personalised recommendations