Skip to main content

Histone Methyltransferases: Opportunities in Cancer Drug Discovery

  • Chapter
  • First Online:

Abstract

The potential for developing therapeutics for cancers driven by aberrant gene expression is becoming a reality in recent years, largely due to the identification and characterization of the enzymatic components regulating chromatin structure and function. One of the major classes of chromatin-modifying enzymes is the histone methyltransferases. These enzymes catalyze the methylation of lysine and arginine residues on the core nucleosomal histones. The methylation pattern present on the histones is associated with different chromatin states depending upon the particular site of methylation. The lysine and arginine methyltransferases (KMTs and RMTs) comprise enzyme families with promising therapeutic potential because they have been found to be altered in diseases with high unmet need (e.g., cancer) and are amenable to small molecule drug discovery efforts (Copeland et al., Nat Rev Drug Discov 8(9):724–732, 2009). The purpose of this chapter is to review the histone lysine and arginine methyltransferases with particular focus on their histone substrates and their association with cancer and status of the development of small molecule inhibitors.

Richard Chesworth and Tim J. Wigle contributed equally to the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Farha M et al (2008) The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7(3):560–572

    Article  CAS  PubMed  Google Scholar 

  • Adams-Cioaba MA, Min J (2009) Structure and function of histone methylation binding proteins. Biochem Cell Biol 87(1):93–105

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal P et al (2010) Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell 18(4):329–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Agger K et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734

    Article  CAS  PubMed  Google Scholar 

  • Allan M et al (2009) N-Benzyl-1-heteroaryl-3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as inhibitors of co-activator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett 19(4):1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Andreu-Vieyra CV et al (2010) MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 8(8):e1000453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Angrand PO et al (2001) NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics 74(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Barrett A et al (2007) Breast cancer associated transcriptional repressor PLU-1/JARID1B interacts directly with histone deacetylases. Int J Cancer 121(2):265–275

    Article  CAS  PubMed  Google Scholar 

  • Barry ER, Corry GN, Rasmussen TP (2010) Targeting DOT1L action and interactions in leukemia: the role of DOT1L in transformation and development. Expert Opin Ther Targets 14(4):405–418

    Article  CAS  PubMed  Google Scholar 

  • Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  • Bedford MT, Richard S (2005) Arginine methylation: an emerging regulator of protein function. Mol Cell 18:263–272

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE et al (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    Article  CAS  PubMed  Google Scholar 

  • Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16(1):92–106

    Article  CAS  PubMed  Google Scholar 

  • Boisvert FM et al (2005a) Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev 19(6):671–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boisvert FM et al (2005b) The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle 4(12):1834–1841

    Article  CAS  PubMed  Google Scholar 

  • Botuyan MV et al (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127(7):1361–1373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyer LA et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyer LA et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP et al (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22(20):5323–5335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MA et al (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cao R, Zhang Y (2004a) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Zhang Y (2004b) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14(2):155–164

    Article  CAS  PubMed  Google Scholar 

  • Cao R et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Cao R et al (2008a) Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol Cell Biol 28(5):1862–1872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao Q et al (2008b) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27(58):7274–7284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ceol CJ et al (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471(7339):513–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang Y et al (2009) Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat Struct Mol Biol 16(3):312–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang Y et al (2010) Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. J Mol Biol 400(1):1–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen D et al (1999) Regulation of transcription by a protein methyltransferase. Science 284(5423):2174–2177

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Blumenthal RM (2010) Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 49(14):2999–3008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chesi M et al (1998) The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92(9):3025–3034

    CAS  PubMed  Google Scholar 

  • Cheung N et al (2007) Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 9(10):1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Cloos PA et al (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442(7100):307–311

    Article  CAS  PubMed  Google Scholar 

  • Collins RE et al (2005) In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J Biol Chem 280(7):5563–5570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Copeland RA, Solomon ME, Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8(9):724–732

    Article  CAS  PubMed  Google Scholar 

  • Daigle SR et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65

    Article  CAS  PubMed  Google Scholar 

  • Daujat S et al (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12(24):2090–2097

    Article  CAS  PubMed  Google Scholar 

  • Del Rizzo PA et al (2010) SET7/9 catalytic mutants reveal the role of active site water molecules in lysine multiple methylation. J Biol Chem 285(41):31849–31858

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dillon SC et al (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6(8):227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dirk LM et al (2007) Kinetic manifestation of processivity during multiple methylations catalyzed by SET domain protein methyltransferases. Biochemistry 46(12):3905–3915

    Article  CAS  PubMed  Google Scholar 

  • Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339(2):240–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El Messaoudi S et al (2006) Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proc Natl Acad Sci USA 103(36):13351–13356

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feldman N et al (2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8(2):188–194

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Hara Y, Riabowol K (2002) Different HATS of the ING1 gene family. Trends Cell Biol 12(11):532–538

    Article  CAS  PubMed  Google Scholar 

  • Feng Q et al (2006) Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 26(21):7846–7857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fersht AR, Sperling J (1973) The charge relay system in chymotrypsin and chymotrypsinogen. J Mol Biol 74(2):137–149

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  CAS  PubMed  Google Scholar 

  • Frietze S et al (2008) CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res 68(1):301–306

    Article  CAS  PubMed  Google Scholar 

  • Frietze S et al (2010) ZNF274 recruits the histone methyltransferase SETDB1 to the 3′ ends of ZNF genes. PLoS One 5(12):e15082

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gao WL, Liu HL (2007) DOT1: a distinct class of histone lysine methyltransferase. Yi Chuan 29(12):1449–1454

    CAS  PubMed  Google Scholar 

  • Guendel I et al (2010) Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function. PLoS One 5(6):e11379

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo HB, Guo H (2007) Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity. Proc Natl Acad Sci USA 104(21):8797–8802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo Y et al (2009) Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res 37(7):2204–2210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamamoto R et al (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6(8):731–740

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto R et al (2006) Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci 97(2):113–118

    Article  CAS  PubMed  Google Scholar 

  • Hess JL (2004) Mechanisms of transformation by MLL. Crit Rev Eukaryot Gene Expr 14(4):235–254

    Article  CAS  PubMed  Google Scholar 

  • Higashimoto K et al (2007) Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc Natl Acad Sci USA 104(30):12318–12323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong H et al (2004) Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer 101(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Horton JR et al (2010) Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol 17(1):38–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hou Z et al (2008) The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol 28(10):3198–3207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y et al (2009) Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin Cancer Res 15(23):7217–7228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J et al (2010) G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem 285(13):9636–9641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huynh T et al (2009) Optimization of pyrazole inhibitors of Coactivator Associated Arginine Methyltransferase 1 (CARM1). Bioorg Med Chem Lett 19(11):2924–2927

    Article  CAS  PubMed  Google Scholar 

  • Jaju RJ et al (2001) A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98(4):1264–1267

    Article  CAS  PubMed  Google Scholar 

  • Jansson M et al (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10(12):1431–1439

    Article  CAS  PubMed  Google Scholar 

  • Jeong YS et al (2010) Phosphorylation of serine-10 of histone H3 shields modified lysine-9 selectively during mitosis. Genes Cells 15(3):181–192

    Google Scholar 

  • Kalakonda N et al (2008) Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene 27(31):4293–4304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang MY et al (2007) Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer. Int J Cancer 121(10):2192–2197

    Article  CAS  PubMed  Google Scholar 

  • Kaustov L et al (2011) Recognition and specificity determinants of the human cbx chromodomains. J Biol Chem 286(1):521–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim H et al (2009) Requirement of histone methyltransferase SMYD3 for estrogen receptor-mediated transcription. J Biol Chem 284(30):19867–19877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kireev D et al (2010) Identification of non-peptide malignant brain tumor (MBT) repeat antagonists by virtual screening of commercially available compounds. J Med Chem 53(21):7625–7631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirmizis A, Bartley SM, Farnham PJ (2003) Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2(1):113–121

    CAS  PubMed  Google Scholar 

  • Kleer CG et al (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100(20):11606–11611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klose RJ et al (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442(7100):312–316

    Article  CAS  PubMed  Google Scholar 

  • Kohlmaier A et al (2004) A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2(7):E171

    Article  PubMed Central  PubMed  Google Scholar 

  • Kolbel K et al (2009) Type I arginine methyltransferases PRMT1 and PRMT-3 Act distributively. J Biol Chem 284(13):8274–8282

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  • Krishnan S, Horowitz S, Trievel RC (2011) Structure and function of histone H3 lysine 9 methyltransferases and demethylases. Chembiochem 12(2):254–263

    Google Scholar 

  • Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833

    Article  CAS  PubMed  Google Scholar 

  • Krivtsov AV et al (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14(5):355–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubicek S et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25(3):473–481

    Article  CAS  PubMed  Google Scholar 

  • Lan F et al (2007) Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448(7154):718–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lauring J et al (2008) The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood 111(2):856–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SH et al (2005) The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci USA 102(50): 18075–18080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levine SS et al (2002) The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22(17):6070–6078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H et al (2006) Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442(7098):91–95

    CAS  PubMed  Google Scholar 

  • Li Y et al (2009) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 284(49):34283–34295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X et al (2010) H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood 115(10):2028–2037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim S et al (2010a) Epigenetic regulation of cancer growth by histone demethylases. Int J Cancer 127(9):1991–1998

    Article  CAS  PubMed  Google Scholar 

  • Lim S et al (2010b) Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 31(3):512–520

    Article  CAS  PubMed  Google Scholar 

  • Liu C et al (2007) The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res 67(6):2626–2631

    Article  CAS  PubMed  Google Scholar 

  • Liu F et al (2009a) Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J Med Chem 52(24):7950–7953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G et al (2009b) Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28(50):4491–4500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F et al (2010) Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J Med Chem 53(15):5844–5857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loyola A et al (2009) The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 10(7):769–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo XG et al (2009) Effects of SMYD3 overexpression on transformation, serum dependence, and apoptosis sensitivity in NIH3T3 cells. IUBMB Life 61(6):679–684

    Article  CAS  PubMed  Google Scholar 

  • Majumder S et al (2006) Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66(12):1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Margueron R et al (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32(4):503–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maurer-Stroh S et al (2003) The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28(2):69–74

    Article  CAS  PubMed  Google Scholar 

  • Min J et al (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112(5):711–723

    Article  CAS  PubMed  Google Scholar 

  • Miranda TB et al (2004) PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J Biol Chem 279(22):22902–22907

    Article  CAS  PubMed  Google Scholar 

  • Morin RD et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naeem H et al (2007) The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol Cell Biol 27(1):120–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng HH et al (2002a) Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16(12):1518–1527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng HH et al (2002b) Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277(38):34655–34657

    Article  CAS  PubMed  Google Scholar 

  • Oda H et al (2009) Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 29(8):2278–2295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okada Y et al (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Ooi SK et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154):714–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pal S et al (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24(21):9630–9645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pal S et al (2007) Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J 26(15):3558–3569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pesavento JJ et al (2008) Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol 28(1):468–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters AH et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12(6):1577–1589

    Article  CAS  PubMed  Google Scholar 

  • Purandare AV et al (2008) Pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett 18(15):4438–4441

    Article  CAS  PubMed  Google Scholar 

  • Rao B et al (2005) Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol Cell Biol 25(21):9447–9459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rathert P et al (2008) Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol 4(6):344–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rea S et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    Article  CAS  PubMed  Google Scholar 

  • Richon VM et al (2011) Chemogenetic analysis of human protein methyltransferases. Chem Biol Drug Des 78(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Rosati R et al (2002) NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood 99(10):3857–3860

    Article  CAS  PubMed  Google Scholar 

  • Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25(1):15–30

    Article  CAS  PubMed  Google Scholar 

  • Sanders SL et al (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119(5):603–614

    Article  CAS  PubMed  Google Scholar 

  • Santos-Rosa H et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419(6905):407–411

    Article  CAS  PubMed  Google Scholar 

  • Sarma K et al (2008) Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol 28(8):2718–2731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schlesinger Y et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39(2):232–236

    Article  CAS  PubMed  Google Scholar 

  • Schneider R et al (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6(1):73–77

    Article  CAS  PubMed  Google Scholar 

  • Schotta G et al (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18(11):1251–1262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28(6):329–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulte JH et al (2009) Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 69(5):2065–2071

    Article  CAS  PubMed  Google Scholar 

  • Schultz DC et al (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16(8):919–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shahbazian MD, Zhang K, Grunstein M (2005) Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 19(2):271–277

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Shi X et al (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442(7098):96–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shia WJ et al (2012) PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 119(21):4953–4962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20(3):341–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647(1–2):21–29

    Article  CAS  PubMed  Google Scholar 

  • Sims RJ 3rd, Reinberg D (2006) Histone H3 Lys 4 methylation: caught in a bind? Genes Dev 20(20):2779–2786

    Article  CAS  PubMed  Google Scholar 

  • Singer MS et al (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150(2):613–632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slany RK (2009) The molecular biology of mixed lineage leukemia. Haematologica 94(7):984–993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sneeringer CJ et al (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 107(49):20980–20985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Squazzo SL et al (2006) Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 16(7):890–900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stec I et al (1998) WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum Mol Genet 7(7):1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Steger DJ et al (2008) DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28(8):2825–2839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strahl BD et al (1999) Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA 96(26):14967–14972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tachibana M et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tachibana M et al (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19(7):815–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan X et al (2006) SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci USA 103(8):2713–2718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang J, Kao PN, Herschman HR (2000) Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 275(26):19866–19876

    Article  CAS  PubMed  Google Scholar 

  • Therrien E et al (2009) 1,2-Diamines as inhibitors of co-activator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett 19(23):6725–6732

    Article  CAS  PubMed  Google Scholar 

  • Troffer-Charlier N et al (2007) Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J 26(20):4391–4401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tryndyak VP, Kovalchuk O, Pogribny IP (2006) Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther 5(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • Van Den Broeck A et al (2008) Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 14(22):7237–7245

    Article  CAS  Google Scholar 

  • van Haaften G et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Leeuwen F, Gafken PR, Gottschling DE (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109(6):745–756

    Article  PubMed  Google Scholar 

  • Varambally S et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907):624–629

    Article  CAS  PubMed  Google Scholar 

  • Vedadi M et al (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 7(8):566–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagschal A et al (2008) G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol Cell Biol 28(3):1104–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wan H et al (2009) Benzo[d]imidazole inhibitors of Coactivator Associated Arginine Methyltransferase 1 (CARM1)–Hit to Lead studies. Bioorg Med Chem Lett 19(17):5063–5066

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12(2):475–487

    Article  CAS  PubMed  Google Scholar 

  • Wang GG et al (2007) NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9(7):804–812

    Article  CAS  PubMed  Google Scholar 

  • Wang SZ et al (2008a) Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro. BMB Rep 41(4):294–299

    Article  PubMed  Google Scholar 

  • Wang L, Pal S, Sif S (2008b) Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol 28(20):6262–6277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang P et al (2009) Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol 29(22):6074–6085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe H et al (2008) Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int 8:15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weidinger G (1995) Pharmacokinetic and pharmacodynamic properties and therapeutic use of bunazosin in hypertension. A review. Arzneimittelforschung 45(11):1166–1171

    CAS  PubMed  Google Scholar 

  • Wigle TJ et al (2010) Screening for inhibitors of low-affinity epigenetic peptide-protein interactions: an AlphaScreen-based assay for antagonists of methyl-lysine binding proteins. J Biomol Screen 15(1):62–71

    Article  CAS  PubMed  Google Scholar 

  • Wu H et al (2010) Structural biology of human H3K9 methyltransferases. PLoS One 5(1):e8570

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wysocka J et al (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442(7098):86–90

    CAS  PubMed  Google Scholar 

  • Xiang Y et al (2007) JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci USA 104(49):19226–19231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao B et al (2005) Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes Dev 19(12):1444–1454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xin Z et al (2003) Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J Biol Chem 278(17):14996–15000

    Article  CAS  PubMed  Google Scholar 

  • Xu W et al (2004) A methylation-mediator complex in hormone signaling. Genes Dev 18(2):144–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu C et al (2010) Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci USA 107(45):19266–19271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang ZQ et al (2000) Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res 60(17):4735–4739

    CAS  PubMed  Google Scholar 

  • Yang H et al (2008) Preferential dimethylation of histone H4 lysine 20 by Suv4-20. J Biol Chem 283(18):12085–12092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yap DB et al (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117(8):2451–2459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan W et al (2009) Heterogeneous nuclear ribonucleoprotein L Is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J Biol Chem 284(23):15701–15707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yue WW et al (2007) Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase. EMBO J 26(20):4402–4412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Bruice TC (2007) Histone lysine methyltransferase SET7/9: formation of a water channel precedes each methyl transfer. Biochemistry 46(51):14838–14844

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Bruice TC (2008) Enzymatic mechanism and product specificity of SET-domain protein lysine methyltransferases. Proc Natl Acad Sci USA 105(15):5728–5732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11(5):509–520

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhou L, Cheng X (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J 19(14):3509–3519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Q et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16(3):304–311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Dr. Robert A. Copeland for helpful discussions and careful reading of the Chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria M. Richon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chesworth, R., Wigle, T.J., Kuntz, K.W., Smith, J.J., Richon, V.M. (2014). Histone Methyltransferases: Opportunities in Cancer Drug Discovery. In: Lübbert, M., Jones, P. (eds) Epigenetic Therapy of Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38404-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38404-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38403-5

  • Online ISBN: 978-3-642-38404-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics