Skip to main content

Epigenetic Regulation of Normal Hematopoietic Development

  • Chapter
  • First Online:
Epigenetic Therapy of Cancer

Abstract

Mammalian blood cell production ultimately originates from a pool of pluripotent hematopoietic stem cells (PHSC) which are capable of undergoing self-renewal or commitment to a variety of lineage-committed hematopoietic progenitor cells (HPC) which undergo progressive terminal differentiation, resulting in the production of mature blood cells. Allogeneic cord blood (CB) cells are an important alternative source of marrow-repopulating cells (MRC) which can serve as a stem cell graft for patients with hematological malignancies and blood-related genetic disorders. CB grafts frequently contain less HSC than bone marrow or mobilized peripheral blood grafts which leads to a higher incidence of graft failure and a more prolonged time for hematological reconstitution to occur. The fixed number of HSC within a single CB unit has limited the use of this alternative source of stem cells in adults. Numerous investigators have tried to increase the CB stem cell dose by culturing CB CD34+ cells ex vivo under a variety of conditions in order to shorten the time to engraftment and to make these grafts accessible to adult recipients. We have reported that the expansion of CB CD34+ cells in the presence of cytokines alone alters HSC function leading to the loss of functional HSC after prolonged culture and that the ex vivo sequential addition of chromatin-modifying agents (CMA) to specific cytokine combinations can affect HSC fate decisions resulting in increased numbers of CB MRC. In addition there is presently a need for blood products with rare antigen profiles or for use in alloimmunized individuals. We have attempted to generate such products ex vivo using histone deacetylase inhibitors (HDACI). These data indicate that the HDACI-treated CD34+ cell product was capable of producing human erythroid cells which persisted for least 3 weeks in a xenogeneic transfusion model providing the rationale for further exploring the utility of such ex vivo-generated EPCs as a red cell transfusion product in man. These studies provide insight into the potential utility of CMA as a means of altering the HSC/HPC fate decisions for graft engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-AzaC:

5-Azacytidine

5azaD:

5-Aza-2′-deoxycytidine

CB:

Cord blood

CFSE:

Carboxyfluorescein diacetate succinimidyl ester

ChIP:

Chromatin immunoprecipitation assay

CMA:

Chromatin-modifying agents

DNMTI:

DNA methyltransferase inhibitor

EPC:

Erythroid progenitor cells

GPA:

Glycophorin A

HDACI:

Histone deacetylase inhibitor

HPC:

Hematopoietic progenitor cells

HSC:

Hematopoietic stem cells

LBH589:

Panobinostat

LDS:

Laser dye styryl–751

SAHA:

Suberolylanilide hydroxamic acid

SRC:

NOD-/SCID-repopulating cells

TP:

Transfusion Product

TSA:

Trichostatin A

VPA:

Valproic acid

References

  • Anguita E, Hughes J, Heyworth C et al (2004) Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J 23(14):2841–2852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Apostolou E, Thanos D (2008) Linking differential chromatin loops to transcriptional decisions. Mol Cell 29(2):154–156

    Article  CAS  PubMed  Google Scholar 

  • Araki H, Mahmud N, Milhem M et al (2006) Expansion of human umbilical cord blood SCID-repopulating cells using chromatin-modifying agents. Exp Hematol 34(2):140–149

    Article  CAS  PubMed  Google Scholar 

  • Araki H, Yoshinaga K, Boccuni P et al (2007) Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 109(8):3570–3578

    Article  CAS  PubMed  Google Scholar 

  • Araki H, Baluchamy S, Yoshinaga K et al (2009) Cord blood stem cell expansion is permissive to epigenetic regulation and environmental cues. Exp Hematol 37(9):1084–1095

    Article  CAS  PubMed  Google Scholar 

  • Bachman KE, Rountree MR, Baylin SB (2001) Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 276(34):32282–32287

    Article  CAS  PubMed  Google Scholar 

  • Baek EJ, Kim HS, Kim S et al (2008) In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells. Transfusion 48(10):2235–2245

    Article  PubMed  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    Article  CAS  PubMed  Google Scholar 

  • Bartels M, Geest CR, Bierings M et al (2010) Histone deacetylase inhibition modulates cell fate decisions during myeloid differentiation. Haematologica 95(7):1052–1060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bottardi S, Bourgoin V, Pierre-Charles N et al (2005) Onset and inheritance of abnormal epigenetic regulation in hematopoietic cells. Hum Mol Genet 14(4):493–502

    Article  CAS  PubMed  Google Scholar 

  • Bug G, Schwarz K, Schoch C et al (2007) Effect of histone deacetylase inhibitor valproic acid on progenitor cells of acute myeloid leukemia. Haematologica 92(4):542–545

    Article  CAS  PubMed  Google Scholar 

  • Cairo MS, Wagner JE (1997) Placental and/or umbilical cord blood: an alternative source of hematopoietic stem cells for transplantation. Blood 90(12):4665–4678

    CAS  PubMed  Google Scholar 

  • Challen GA, Sun D, Jeong M et al (2011) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44(1):23–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Challen GA, Sun D, Jeong M et al (2012) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44:23–31

    Article  CAS  Google Scholar 

  • Chang AH, Stephan MT, Sadelain M (2006) Stem cell-derived erythroid cells mediate long-term systemic protein delivery. Nat Biotechnol 24(8):1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia P, Berenzon D, Hoffman R (2011) Chromatin-modifying agents promote the ex vivo production of functional human erythroid progenitor cells. Blood 117(17):4632–4641

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Rodrigues N, Dombkowski D et al (2000) Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 6(11):1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Clouaire T, Stancheva I (2008) Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci 65(10):1509–1522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Congdon KL, Reya T (2008) Divide and conquer: how asymmetric division shapes cell fate in the hematopoietic system. Curr Opin Immunol 20(3):302–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Creusot F, Acs G, Christman JK (1982) Inhibition of DNA methyltransferase and induction of friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 257(4):2041–2048

    CAS  PubMed  Google Scholar 

  • De Felice L, Tatarelli C, Mascolo MG et al (2005) Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res 65(4):1505–1513

    Article  PubMed  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989

    Article  CAS  PubMed  Google Scholar 

  • Dorn I, Lazar-Karsten P, Boie S, Ribbat J et al (2008) In vitro proliferation and differentiation of human CD34+ cells from peripheral blood into mature red blood cells with two different cell culture systems. Transfusion 48(6):1122–1132

    Article  PubMed  Google Scholar 

  • Elizalde C, Fernández-Rueda J, Salcedo JM et al (2012) Histone deacetylase 3 modulates the expansion of human hematopoietic stem cells. Stem Cells Dev 21(14):2581–2591

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425(6957):475–479

    Article  CAS  PubMed  Google Scholar 

  • Fujimi A, Matsunaga T, Kobune M et al (2008) Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages. Int J Hematol 87(4):339–350

    Article  PubMed  Google Scholar 

  • Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15(5):490–495

    Article  CAS  PubMed  Google Scholar 

  • Fuks F, Burgers WA, Brehm A et al (2000) DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 24(1):88–91

    Article  CAS  PubMed  Google Scholar 

  • Giarratana MC, Kobari L, Lapillonne H et al (2005) Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Giarratana MC, Rouard H, Dumont A et al (2011) Proof of principle for transfusion of in vitro-generated red blood cells. Blood 118(19):5071–5079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert J, Gore SD, Herman JG et al (2004) The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res 10(14):4589–4596

    Article  CAS  PubMed  Google Scholar 

  • Goffin J, Eisenhauer E (2002) DNA methyltransferase inhibitors-state of the art. Ann Oncol 13(11):1699–1716

    Article  CAS  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  • Grass JA, Boyer ME, Pal S et al (2003) GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci U S A 100(15):8811–8816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gubin AN, Njoroge JM, Bouffard GG et al (1999) Gene expression in proliferating human erythroid cells. Genomics 59(2):168–177

    Article  CAS  PubMed  Google Scholar 

  • Hogart A, Lichtenberg J, Ajay SS et al (2012) Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites. Genome Res 22:1407–1418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Humphries RK, Dover G, Young NS et al (1985) 5-Azacytidine acts directly on both erythroid precursors and progenitors to increase production of fetal hemoglobin. J Clin Invest 75(2):547–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Im H, Grass JA, Johnson KD et al (2005) Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region. Proc Natl Acad Sci U S A 102(47):17065–17070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwasaki H, Mizuno S, Arinobu Y et al (2006) The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 20(21):3010–3021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Ehrlich LI, Seita J et al (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467(7313):338–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia D, Jurkowska RZ, Zhang X et al (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449(7159):248–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jing H, Vakoc CR, Ying L et al (2008) Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Mol Cell 29(2):232–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428

    CAS  PubMed  Google Scholar 

  • Jüttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 91(25):11797–11801

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim SI, Bultman SJ, Jing H et al (2007) Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation. Mol Cell Biol 27(12):4551–4565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  • Kretsovali A, Hadjimichael C, Charmpilas N (2012) Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int 2012:184154

    PubMed Central  PubMed  Google Scholar 

  • Lamonica JM, Vakoc CR, Blobel GA (2006) Acetylation of GATA-1 is required for chromatin occupancy. Blood 108(12):3736–3738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27(32):5459–5468

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142(5):682–685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lessard JA, Crabtree GR (2010) Chromatin regulatory mechanisms in pluripotency. Annu Rev Cell Dev Biol 26:503–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohmann F, Bieker JJ (2008) Activation of Eklf expression during hematopoiesis by Gata2 and Smad5 prior to erythroid commitment. Development 135(12):2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Lopez J, Percharde M, Coley HM et al (2009) The context and potential of epigenetics in oncology. Br J Cancer 100(4):571–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin M, Kettmann R, Dequiedt F (2007) ClassIIa histone deacetylases: regulating the regulators. Oncogene 26(37):5450–5467

    Article  CAS  PubMed  Google Scholar 

  • Martowicz ML, Grass JA, Boyer ME et al (2005) Dynamic GATA factor interplay at a multicomponent regulatory region of the GATA-2 locus. J Biol Chem 280(3):1724–1732

    Article  CAS  PubMed  Google Scholar 

  • Martowicz ML, Grass JA, Bresnick EH (2006) GATA-1-mediated transcriptional repression yields persistent transcription factor IIB-chromatin complexes. J Biol Chem 281(49):37345–37352

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Tanaka I, Kobune M et al (2006) Ex vivo large-scale generation of human platelets from cord blood CD34+ cells. Stem Cells 24(12):2877–2887

    Article  CAS  PubMed  Google Scholar 

  • Metivier R, Gallais R, Tiffoche C et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452(7183):45–50

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio AR, Adamson JW, Stevens CE et al (2000) Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood 96(8):2717–2722

    CAS  PubMed  Google Scholar 

  • Miharada K, Hiroyama T, Sudo K et al (2006) Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol 24(10):1255–1256

    Article  CAS  PubMed  Google Scholar 

  • Milhem M, Mahmud N, Lavelle D et al (2004) Modification of hematopoietic stem cell fate by 5aza 2′deoxycytidine and trichostatin A. Blood 103(11):4102–4110

    Article  CAS  PubMed  Google Scholar 

  • Milne JC, Lambert PD, Schenk S et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450(7170):712–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD et al (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113

    Article  CAS  PubMed  Google Scholar 

  • Neildez-Nguyen TM, Wajcman H, Marden MC et al (2002) Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 20(5):467–472

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Cantor AB, Johnson KD et al (2004) Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc Natl Acad Sci U S A 101(4):980–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rice KL, Hormaeche I, Licht JD (2007) Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 26(47):6697–6714

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD, Jones PA (2000) DNA methylation: past, present and future directions. Carcinogenesis 21(3):461–467

    Article  CAS  PubMed  Google Scholar 

  • Ross K, Sedello AK, Todd GP et al (2012) Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells. Blood 119(18):4152–4161

    Article  CAS  PubMed  Google Scholar 

  • Saunthararajah Y, Hillery CA, Lavelle D et al (2003) Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood 102(12):3865–3870

    Article  CAS  PubMed  Google Scholar 

  • Saunthararajah Y, Molokie R, Saraf S et al (2008) Clinical effectiveness of decitabine in severe sickle cell disease. Br J Haematol 141(1):126–129

    Article  PubMed  Google Scholar 

  • Sieburg HB, Cho RH, Dykstra B et al (2006) The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107(6):2311–2316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CL (2008) A shifting paradigm: histone deacetylases and transcriptional activation. Bioessays 30(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Spotswood HT, Turner BM (2002) An increasingly complex code. J Clin Invest 110(5):577–582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanevsky A, Goldstein G, Nagler A (2009) Umbilical cord blood transplantation: pros, cons and beyond. Blood Rev 23(5):199–204

    Article  PubMed  Google Scholar 

  • Tadokoro Y, Ema H, Okano M et al (2007) De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 204(4):715–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wada T, Kikuchi J, Nishimura N et al (2009) Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem 284(44):30673–30683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6(2):93–106

    Article  CAS  PubMed  Google Scholar 

  • Wozniak RJ, Bresnick EH (2008) Epigenetic control of complex loci during erythropoiesis. Curr Top Dev Biol 82:55–83

    Article  CAS  PubMed  Google Scholar 

  • Zardo G, Cimino G, Nervi C (2008) Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/progenitor cells: therapeutic potential of cell reprogramming. Leukemia 22(8):1503–1518

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Chaurasia PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chaurasia, P., Berenzon, D., Hoffman, R. (2014). Epigenetic Regulation of Normal Hematopoietic Development. In: Lübbert, M., Jones, P. (eds) Epigenetic Therapy of Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38404-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38404-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38403-5

  • Online ISBN: 978-3-642-38404-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics