Skip to main content

The Fundamental Role of Epigenetic Regulation in Normal and Disturbed Cell Growth, Differentiation, and Stemness

  • Chapter
  • First Online:
Epigenetic Therapy of Cancer

Abstract

In eukaryotes, DNA packaging into nucleosomes and higher-order chromatin structures is able to prevent the operation of the nuclear factors in charge of genetic functions. For this reason, during all DNA-templated cellular processes, chromatin structures must undergo dynamic remodeling (opening and closing of higher-order structures) in order to regulate access to their corresponding DNA segments. Epigenetics comprises a highly connected, dynamic set of mechanisms through which cells can execute this key remodeling: DNA methylation, covalent histone modifications, histone variants, and ATP-dependent chromatin-remodeling complexes. Additionally, microRNAs are usually incorporated into the same category, as their regulation can directly affect, and be affected by, the former. Disruption of any of these processes, which are essential for cell renewal, differentiation, and stemness, is intimately linked with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J, Helin K (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23(10):1171–1176. doi:10.1101/gad.510809, 23/10/1171 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988. doi:10.1073/pnas.0530291100, 0530291100 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636. doi:10.1016/j.cell.2007.10.039, S0092-8674(07)01359-1 [pii]

    CAS  PubMed  Google Scholar 

  • Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388. doi:10.1016/j.stem.2011.03.001, S1934-5909(11)00111-1 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ayton PM, Cleary ML (2001) Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20(40):5695–5707. doi:10.1038/sj.onc.1204639

    CAS  PubMed  Google Scholar 

  • Badal V, Chuang LS, Tan EH, Badal S, Villa LL, Wheeler CM, Li BF, Bernard HU (2003) CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol 77(11):6227–6234

    PubMed Central  PubMed  Google Scholar 

  • Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D, Bredel M, Vogel H, Mills AA (2007) CHD5 is a tumor suppressor at human 1p36. Cell 128(3):459–475. doi:10.1016/j.cell.2006.11.052, S0092-8674(07)00053-0 [pii]

    CAS  PubMed  Google Scholar 

  • Bahubeshi A, Bal N, Frio TR, Hamel N, Pouchet C, Yilmaz A, Bouron-Dal Soglio D et al (2010) Germline DICER1 mutations and familial cystic nephroma. J Med Genet 47(12):863–866. doi:10.1136/jmg.2010.081216, jmg.2010.081216 [pii]

    PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. doi:10.1038/cr.2011.22, cr201122 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124. doi:10.1038/35065138, 35065138 [pii]

    CAS  PubMed  Google Scholar 

  • Bao Y, Shen X (2007) SnapShot: chromatin remodeling complexes. Cell 129(3):632. doi:10.1016/j.cell.2007.04.018, S0092-8674(07)00524-7 [pii]

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. doi:10.1038/nature05236, nature05236 [pii]

    CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi:10.1016/j.cell.2007.05.009, S0092-8674(07)00600-9 [pii]

    CAS  PubMed  Google Scholar 

  • Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143(3):470–484. doi:10.1016/j.cell.2010.10.012, S0092-8674(10)01182-7 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13. doi:10.1016/j.molcel.2008.12.013, S1097-2765(08)00856-3 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R, Alaminos M, Cheung NK, Rahman N, Esteller M (2009) Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci U S A 106(51):21830–21835. doi:10.1073/pnas.0906831106, 0906831106 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783. doi:10.1101/gad.1787609, 23/7/781 [pii]

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326. doi:10.1016/j.cell.2006.02.041, S0092-8674(06)00380-1 [pii]

    CAS  PubMed  Google Scholar 

  • Bhalla KN (2005) Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23(17):3971–3993. doi:10.1200/JCO.2005.16.600, JCO.2005.16.600 [pii]

    CAS  PubMed  Google Scholar 

  • Bogdanovic O, Veenstra GJ (2009) DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118(5):549–565. doi:10.1007/s00412-009 0221-9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317(5845):1760–1764. doi:10.1126/science.1147939, 1147939 [pii]

    CAS  PubMed  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294(5551):2536–2539

    PubMed  Google Scholar 

  • Bracken AP, Helin K (2009) Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9(11):773–784. doi:10.1038/nrc2736, nrc2736 [pii]

    CAS  PubMed  Google Scholar 

  • Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sultmann H, Lyko F (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423. doi:10.1158/0008-5472.CAN-06-4074, 67/4/1419 [pii]

    CAS  PubMed  Google Scholar 

  • Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D et al (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93(9):691–699

    CAS  PubMed  Google Scholar 

  • Burke TW, Cook JG, Asano M, Nevins JR (2001) Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem 276(18):15397–15408. doi:10.1074/jbc.M011556200, M011556200 [pii]

    CAS  PubMed  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966. doi:10.1261/rna.7135204, rna.7135204 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529. doi:10.1073/pnas.242606799, 242606799 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004. doi:10.1073/pnas.0307323101, 0307323101 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Cimmino A, Fabbr M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171. doi:10.1073/pnas.0800121105, 0800121105 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L et al (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471(7339):513–517. doi:10.1038/nature09806, nature09806 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chadwick BP, Willard HF (2002) Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome. J Cell Biol 157(7):1113–1123. doi:10.1083/jcb.200112074, jcb.200112074 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chai J, Charboneau AL, Betz BL, Weissman BE (2005) Loss of the hSNF5 gene concomitantly inactivates p21CIP/WAF1 and p16INK4a activity associated with replicative senescence in A204 rhabdoid tumor cells. Cancer Res 65(22):10192–10198. doi:10.1158/0008-5472.CAN-05-1896, 65/22/10192 [pii]

    CAS  PubMed  Google Scholar 

  • Champagne KS, Kutateladze TG (2009) Structural insight into histone recognition by the ING PHD fingers. Curr Drug Targets 10(5):432–441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Champagne N, Bertos NR, Pelletier N, Wang AH, Vezmar M, Yang Y, Heng HH, Yang XJ (1999) Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274(40):28528–28536

    CAS  PubMed  Google Scholar 

  • Chan EM, Chan RJ, Comer EM, Goulet RJ 3rd, Crean CD, Brown ZD, Fruehwald AM et al (2007) MOZ and MOZ-CBP cooperate with NF-kappaB to activate transcription from NF-kappaB-dependent promoters. Exp Hematol 35(12):1782–1792. doi:10.1016/j.exphem.2007.07.015, S0301-472X(07)00437-7 [pii]

    CAS  PubMed  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50. doi:10.1038/ng.2007.30, ng.2007.30 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–294. doi:10.1146/annurev.biophys.34.040204.144452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chi P, Allis CD, Wang GG (2010) Covalent histone modifications – miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469. doi:10.1038/nrc2876, nrc2876 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christophersen NS, Helin K (2010) Epigenetic control of embryonic stem cell fate. J Exp Med 207(11):2287–2295. doi:10.1084/jem.20101438, em.20101438 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277(5334):1996–2000

    CAS  PubMed  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. doi:10.1146/annurev.biochem.77.062706.153223

    CAS  PubMed  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005a) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951. doi:10.1158/0008-5472.CAN-05-2018, 65/23/10946 [pii]

    CAS  PubMed  Google Scholar 

  • Collins RE, Tachibana M, Tamaru H, Smith KM, Jia D, Zhang X, Selker EU, Shinkai Y, Cheng X (2005b) In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J Biol Chem 280(7):5563–5570. doi:10.1074/jbc.M410483200, M410483200 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corona DF, Tamkun JW (2004) Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim Biophys Acta 1677(1–3):113–119. doi:10.1016/j.bbaexp.2003.09.018, S0167478103002835 [pii]

    CAS  PubMed  Google Scholar 

  • Creyghton MP, Markoulaki S, Levine SS, Hanna J, Lodato MA, Sha K, Young RA, Jaenisch R, Boyer LA (2008) H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135(4):649–661. doi:10.1016/j.cell.2008.09.056, S0092-8674(08)01252-X [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714. doi:10.1038/nrg2634, nrg2634 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299(5613):1753–1755. doi:10.1126/science.1080902 299/5613/1753 [pii]

    CAS  PubMed  Google Scholar 

  • Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163. doi:10.1073/pnas.0703478104, 0703478104 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363. doi:10.1038/nature08672, nature08672 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25(3):315–319. doi:10.1038/77083

    CAS  PubMed  Google Scholar 

  • Daniel FI, Cherubini K, Yurgel LS, de Figueiredo MA, Salum FG (2011) The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer 117(4):677–687. doi:10.1002/cncr.25482

    CAS  PubMed  Google Scholar 

  • Dar AA, Goff LW, Majid S, Berlin J, El-Rifai W (2010) Aurora kinase inhibitors – rising stars in cancer therapeutics? Mol Cancer Ther 9(2):268–278. doi:10.1158/1535-7163.MCT-09-0765, 1535-7163.MCT-09-0765 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davalos V, Esteller M (2010) MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol 22(1):35–45. doi:10.1097/CCO.0b013e328333dcbb

    CAS  PubMed  Google Scholar 

  • Davis CA, Haberland M, Arnold MA, Sutherland LB, McDonald OG, Richardson JA, Childs G, Harris S, Owens GK, Olson EN (2006) PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol Cell Biol 26(7):2626–2636. doi:10.1128/MCB.26.7.2626-2636.2006, 26/7/2626 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR, Kouzarides T (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461(7265):819–822. doi:10.1038/nature08448, nature08448 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • de la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA (2005) Do protein motifs read the histone code? Bioessays 27(2):164–175. doi:10.1002/bies.20176

    PubMed  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022. doi:10.1101/gad.2037511, 25/10/1010 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • den Hollander J, Rimpi S, Doherty JR, Rudelius M, Buck A, Hoellein A, Kremer M et al (2010) Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116(9):1498–1505. doi:10.1182/blood-2009-11-251074, blood-2009-11-251074 [pii]

    Google Scholar 

  • Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F et al (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295(5557):1079–1082. doi:10.1126/science.1065173, 295/5557/1079 [pii]

    PubMed  Google Scholar 

  • Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353. doi:10.1038/ng.471, ng.471 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorrance AM, Liu S, Chong A, Pulley B, Nemer D, Guimond M, Yuan W et al (2008) The Mll partial tandem duplication: differential, tissue-specific activity in the presence or absence of the wild-type allele. Blood 112(6):2508–2511. doi:10.1182/blood-2008-01-134338, blood-2008-01-134338 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21(1):51–64. doi:10.1016/j.molcel.2005.12.007, S1097-2765(05)01849-6 [pii]

    CAS  PubMed  Google Scholar 

  • Duan Q, Chen H, Costa M, Dai W (2008) Phosphorylation of H3S10 blocks the access of H3K9 by specific antibodies and histone methyltransferase. Implication in regulating chromatin dynamics and epigenetic inheritance during mitosis. J Biol Chem 283(48):33585–33590. doi:10.1074/jbc.M803312200, M803312200 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135(2):284–294. doi:10.1016/j.cell.2008.09.055, S0092-8674(08)01248-8 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455. doi:10.1126/science.1083557, 300/5618/455 [pii]

    CAS  PubMed  Google Scholar 

  • Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8(6):1409–1420

    CAS  PubMed  Google Scholar 

  • Endoh M, Endo TA, Endoh T, Fujimura Y, Ohara O, Toyoda T, Otte AP et al (2008) Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135(8):1513–1524. doi:10.1242/dev.014340, dev.014340 [pii]

    CAS  PubMed  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298. doi:10.1038/nrg2005, nrg2005 [pii]

    CAS  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159. doi:10.1056/NEJMra072067, 358/11/1148 [pii]

    CAS  PubMed  Google Scholar 

  • Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA, Jacobsen SE, Pradhan S (2009) Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci U S A 106(13):5076–5081. doi:10.1073/pnas.0810362106, 0810362106 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810. doi:10.1073/pnas.0707628104, 0707628104 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D et al (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12(5):457–466. doi:10.1016/j.ccr.2007.09.020, S1535-6108(07)00268-1 [pii]

    CAS  PubMed  Google Scholar 

  • Fazzio TG, Huff JT, Panning B (2008) Tip60-p400 as a regulator of embryonic stem cell identity. Cell 1 134(1):162–174. doi:10.1016/j.cell.2008.05.031, S0092-8674(08)00692-2 [pii]

    Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33. doi:10.1038/nrg1748, nrg1748 [pii]

    CAS  PubMed  Google Scholar 

  • Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12(12):1052–1058, S0960982202009016 [pii]

    CAS  PubMed  Google Scholar 

  • Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ, Kurdistani SK (2008) Epigenetic reprogramming by adenovirus e1a. Science 321(5892):1086–1088. doi:10.1126/science.1155546, 321/5892/1086 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438(7071):1116–1122

    CAS  PubMed  Google Scholar 

  • Fisher CL, Fisher AG (2011) Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev 21(2):140–146. doi:10.1016/j.gde.2011.01.015, S0959-437X(11)00019-0 [pii]

    CAS  PubMed  Google Scholar 

  • Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34(10):2887–2905. doi:10.1093/nar/gkl295, 34/10/2887 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400. doi:10.1038/ng1531, ng1531 [pii]

    CAS  PubMed  Google Scholar 

  • Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W, Zhou X, Jones PA (2009a) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69(6):2623–2629. doi:10.1158/0008-5472.CAN-08-3114, 0008-5472.CAN-08-3114 [pii]

    CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009b) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108, gr.082701.108 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38(5):540–549. doi:10.1038/ng1781, ng1781 [pii]

    CAS  PubMed  Google Scholar 

  • Funabiki T, Kreider BL, Ihle JN (1994) The carboxyl domain of zinc fingers of the Evi-1 myeloid transforming gene binds a consensus sequence of GAAGATGAG. Oncogene 9(6):1575–1581

    CAS  PubMed  Google Scholar 

  • Futscher BW, Oshiro MM, Wozniak RJ, Holtan N, Hanigan CL, Duan H, Domann FE (2002) Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet 31(2):175–179. doi:10.1038/ng886, ng886 [pii]

    CAS  PubMed  Google Scholar 

  • Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S et al (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113(25):6411–6418. doi:10.1182/blood-2008-07-170589, blood-2008-07-170589 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J et al (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460(7257):863–868. doi:10.1038/nature08212, nature08212 [pii]

    CAS  PubMed  Google Scholar 

  • Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y et al (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24(3):300–303. doi:10.1038/73536

    CAS  PubMed  Google Scholar 

  • Gibbons RJ (2005) Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet 14(Spec No 1):R85–R92. doi:10.1093/hmg/ddi106, 14/suppl_1/R85 [pii]

    CAS  PubMed  Google Scholar 

  • Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691. doi:10.1016/j.cell.2010.01.003, S0092-8674(10)00004-8 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311(5759):395–398. doi:10.1126/science.1120976, 311/5759/395 [pii]

    CAS  PubMed  Google Scholar 

  • Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F et al (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448(7157):1063–1067. doi:10.1038/nature06055, nature06055 [pii]

    CAS  PubMed  Google Scholar 

  • Hall JA, Georgel PT (2007) CHD proteins: a diverse family with strong ties. Biochem Cell Biol 85(4):463–476. doi:10.1139/O07-063, o07-063 [pii]

    CAS  PubMed  Google Scholar 

  • Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6(8):731–740. doi:10.1038/ncb1151, ncb1151 [pii]

    CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887–901. doi:10.1016/j.cell.2006.03.043, S0092-8674(06)00516-2 [pii]

    CAS  PubMed  Google Scholar 

  • Han H, Cortez CC, Yang X, Nichols PW, Jones PA, Liang G (2011) DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum Mol Genet. doi:10.1093/hmg/ddr356, ddr356 [pii]

    Google Scholar 

  • Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420. doi:10.1038/cr.2011.32, cr201132 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatziapostolou M, Iliopoulos D (2011) Epigenetic aberrations during oncogenesis. Cell Mol Life Sci 68(10):1681–1702. doi:10.1007/s00018-010-0624-z

    CAS  PubMed  Google Scholar 

  • Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE et al (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6(5):479–491. doi:10.1016/j.stem.2010.03.018, S1934-5909(10)00147-5 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438(7071):1176–1180. doi:10.1038/nature04254, nature04254 [pii]

    CAS  PubMed  Google Scholar 

  • Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J, Crabtree GR (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A 106(13):5181–5186. doi:10.1073/pnas.0812889106, 0812889106 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holz-Schietinger C, Reich NO (2010) The inherent processivity of the human de novo methyltransferase 3A (DNMT3A) is enhanced by DNMT3L. J Biol Chem 285(38):29091–29100. doi:10.1074/jbc.M110.142513, M110.142513 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hon GC, Hawkins RD, Ren B (2009) Predictive chromatin signatures in the mammalian genome. Hum Mol Genet 18(R2):R195–R201. doi:10.1093/hmg/ddp409, ddp409 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horwitz GA, Zhang K, McBrian MA, Grunstein M, Kurdistani SK, Berk AJ (2008) Adenovirus small e1a alters global patterns of histone modification. Science 321(5892):1084–1085. doi:10.1126/science.1155544, 321/5892/1084 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A (2008) Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27(3):404–408. doi:10.1038/sj.onc.1210631, 1210631 [pii]

    CAS  PubMed  Google Scholar 

  • Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312(5774):748–751. doi:10.1126/science.1125162, 1125162 [pii]

    CAS  PubMed  Google Scholar 

  • Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275. doi:10.1038/nbt.1502, nbt.1502 [pii]

    CAS  PubMed  Google Scholar 

  • Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C et al (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23(11):1327–1337. doi:10.1101/gad.1777409, 23/11/1327 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838. doi:10.1126/science.1062961, 1062961 [pii]

    CAS  PubMed  Google Scholar 

  • Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y (1997) Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 90(12):4699–4704

    CAS  PubMed  Google Scholar 

  • Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP (2010) Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 6(9):e1001134. doi:10.1371/journal.pgen.1001134

    PubMed Central  PubMed  Google Scholar 

  • Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707. doi:10.1158/0008-5472.CAN-07-1936, 67/18/8699 [pii]

    CAS  PubMed  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186. doi:10.1038/ng.298, ng.298 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Italiano A, Attias R, Aurias A, Perot G, Burel-Vandenbos F, Otto J, Venissac N, Pedeutour F (2006) Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genet Cytogenet 167(2):122–130. doi:10.1016/j.cancergencyto.2006.01.004, S0165-4608(06)00049-5 [pii]

    CAS  PubMed  Google Scholar 

  • Ito Y, Koessler T, Ibrahim AE, Rai S, Vowler SL, Abu-Amero S, Silva AL et al (2008) Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet 17(17):2633–2643. doi:10.1093/hmg/ddn163, ddn163 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133. doi:10.1038/nature09303, nature09303 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582. doi:10.1016/j.cell.2008.01.015, S0092-8674(08)00115-3 [pii]

    CAS  PubMed  Google Scholar 

  • Jeong S, Liang G, Sharma S, Lin JC, Choi SH, Han H, Yoo CB, Egger G, Yang AS, Jones PA (2009) Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA. Mol Cell Biol 29(19):5366–5376. doi:10.1128/MCB.00484-09, MCB.00484-09 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H et al (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467(7313):338–342. doi:10.1038/nature09367, nature09367 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172. doi:10.1038/nrg2522, nrg2522 [pii]

    CAS  PubMed  Google Scholar 

  • Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21(12):1519–1529. doi:10.1101/gad.1547707, 21/12/1519 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428. doi:10.1038/nrg816, nrg816 [pii]

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692. doi:10.1016/j.cell.2007.01.029, S0092-8674(07)00127-4 [pii]

    CAS  PubMed  Google Scholar 

  • Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21(2):163–167. doi:10.1038/5947

    CAS  PubMed  Google Scholar 

  • Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10(11):805–811. doi:10.1038/nrg2651, nrg2651 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R, Solleder G et al (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66(23):11341–11347. doi:10.1158/0008-5472.CAN-06-1570, 66/23/11341 [pii]

    CAS  PubMed  Google Scholar 

  • Kanhere A, Viiri K, Araujo CC, Rasaiyaah J, Bouwman RD, Whyte WA, Pereira CF et al (2010) Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell 38(5):675–688. doi:10.1016/j.molcel.2010.03.019, S1097-2765(10)00327-8 [pii]

    CAS  Google Scholar 

  • Kanwal R, Gupta S (2010) Epigenetics and cancer. J Appl Physiol 109(2):598–605. doi:10.1152/japplphysiol.00066.2010, 00066.2010 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kidder BL, Palmer S, Knott JG (2009) SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27(2):317–328. doi:10.1634/stemcells.2008-0710, stemcells.2008-0710 [pii]

    CAS  PubMed  Google Scholar 

  • Kim KC, Geng L, Huang S (2003) Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res 63(22):7619–7623

    CAS  PubMed  Google Scholar 

  • Kim J, Daniel J, Espejo A, Lake A, Krishna M, Xia L, Zhang Y, Bedford MT (2006) Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep 7(4):397–403. doi:10.1038/sj.embor.7400625, 7400625 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG (2009) RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137(3):459–471. doi:10.1016/j.cell.2009.02.027, S0092-8674(09)00203-7 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8(4):307–318. doi:10.1038/nrm2143, nrm2143 [pii]

    CAS  PubMed  Google Scholar 

  • Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213. doi:10.1016/j.stem.2011.01.008, S1934-5909(11)00009-9 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo Y, Shen L, Suzuki S, Kurokawa T, Masuko K, Tanaka Y, Kato H et al (2007) Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol Res 37(11):974–983. doi:10.1111/j.1872-034X.2007.00141.x, HEP141 [pii]

    CAS  PubMed  Google Scholar 

  • Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T et al (2008) Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40(6):741–750. doi:10.1038/ng.159, ng.159 [pii]

    CAS  PubMed  Google Scholar 

  • Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E et al (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317(5841):1087–1090. doi:10.1126/science.1145339, 317/5841/1087 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. doi:10.1016/j.cell.2007.02.005, S0092-8674(07)00184-5 [pii]

    CAS  PubMed  Google Scholar 

  • Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833. doi:10.1038/nrc2253, nrc2253 [pii]

    CAS  PubMed  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120. doi:10.1038/35065132, 35065132 [pii]

    CAS  PubMed  Google Scholar 

  • Lahortiga I, Agirre X, Belloni E, Vazquez I, Larrayoz MJ, Gasparini P, Lo Coco F, Pelicci PG, Calasanz MJ, Odero MD (2004) Molecular characterization of a t(1;3)(p36;q21) in a patient with MDS. MEL1 is widely expressed in normal tissues, including bone marrow, and it is not overexpressed in the t(1;3) cells. Oncogene 23(1):311–316. doi:10.1038/sj.onc.1206923, 1206923 [pii]

    CAS  PubMed  Google Scholar 

  • Lai AY, Wade PA (2011) Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 11(8):588–596. doi:10.1038/nrc3091, nrc3091 [pii]

    CAS  PubMed  Google Scholar 

  • Landeira D, Sauer S, Poot R, Dvorkina M, Mazzarella L, Jorgensen HF, Pereira CF et al (2010) Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol 12(6):618–624. doi:10.1038/ncb2065, ncb2065 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landry J, Sharov AA, Piao Y, Sharova LV, Xiao H, Southon E, Matta J et al (2008) Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells. PLoS Genet 4(10):e1000241. doi:10.1371/journal.pgen.1000241

    PubMed Central  PubMed  Google Scholar 

  • Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13(4):1095–1107

    CAS  PubMed  Google Scholar 

  • Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20(3):320–331. doi:10.1101/gr.101907.109, gr.101907.109 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060. doi:10.1038/sj.emboj.7600385, 7600385 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F, Kreipe H (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214(1):17–24. doi:10.1002/path.2251

    CAS  PubMed  Google Scholar 

  • Lessard JA, Crabtree GR (2010) Chromatin regulatory mechanisms in pluripotency. Annu Rev Cell Dev Biol 26:503–532. doi:10.1146/annurev-cellbio-051809-102012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C et al (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433. doi:10.1056/NEJMoa1005143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL (2007a) The role of chromatin during transcription. Cell 128(4):707–719. doi:10.1016/j.cell.2007.01.015, S0092-8674(07)00109-2 [pii]

    CAS  PubMed  Google Scholar 

  • Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007b) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037. doi:10.1158/0008-5472.CAN-06-2030, 67/3/1030 [pii]

    CAS  PubMed  Google Scholar 

  • Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL (1998) Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92(6):2118–2122

    CAS  PubMed  Google Scholar 

  • Lim S, Janzer A, Becker A, Zimmer A, Schule R, Buettner R, Kirfel J (2010) Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 31(3):512–520. doi:10.1093/carcin/bgp324, bgp324 [pii]

    CAS  PubMed  Google Scholar 

  • Lin JC, Jeong S, Liang G, Takai D, Fatemi M, Tsai YC, Egger G, Gal-Yam EN, Jones PA (2007) Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12(5):432–444. doi:10.1016/j.ccr.2007.10.014, S1535-6108(07)00299-1 [pii]

    CAS  PubMed  Google Scholar 

  • Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39(3):1054–1065. doi:10.1093/nar/gkq850, gkq850 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi:10.1038/nature08514, nature08514 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K (2009a) Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem 284(47):32288–32295. doi:10.1074/jbc.M109.045856, M109.045856 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP, Yang ZQ (2009b) Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28(50):4491–4500. doi:10.1038/onc.2009.297, onc2009297 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5(6):917–926, S1097-2765(00)80257-9 [pii]

    CAS  PubMed  Google Scholar 

  • Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67(21):10117–10122. doi:10.1158/0008-5472.CAN-07-2544, 67/21/10117 [pii]

    CAS  PubMed  Google Scholar 

  • Lu PY, Levesque N, Kobor MS (2009) NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components. Biochem Cell Biol 87(5):799–815. doi:10.1139/O09-062, o09-062 [pii]

    CAS  PubMed  Google Scholar 

  • Lu C, Han HD, Mangala LS, Ali-Fehmi R, Newton CS, Ozbun L, Armaiz-Pena GN et al (2010) Regulation of tumor angiogenesis by EZH2. Cancer Cell 18(2):185–197. doi:10.1016/j.ccr.2010.06.016, S1535-6108(10)00250-3 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science 327(5968):996–1000. doi:10.1126/science.1184208, science.1184208 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8(2):140–146, S0959-437X(98)80134-2 [pii]

    CAS  PubMed  Google Scholar 

  • Luijsterburg MS, van Attikum H (2011) Chromatin and the DNA damage response: the cancer connection. Mol Oncol 5(4):349–367. doi:10.1016/j.molonc.2011.06.001, S1574-7891(11)00069-X [pii]

    CAS  PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424–1429. doi:10.1158/0008-5472.CAN-06-4218, 67/4/1424 [pii]

    CAS  PubMed  Google Scholar 

  • Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, Montuenga LM et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105(36):13556–13561. doi:10.1073/pnas.0803055105, 0803055105 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lutz T, Stoger R, Nieto A (2006) CHD6 is a DNA-dependent ATPase and localizes at nuclear sites of mRNA synthesis. FEBS Lett 580(25):5851–5857. doi:10.1016/j.febslet.2006.09.049, S0014-5793(06)01156-2 [pii]

    CAS  PubMed  Google Scholar 

  • Macdonald N, Welburn JP, Noble ME, Nguyen A, Yaffe MB, Clynes D, Moggs JG et al (2005) Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol Cell 20(2):199–211. doi:10.1016/j.molcel.2005.08.032, S1097-2765(05)01596-0 [pii]

    CAS  PubMed  Google Scholar 

  • Majumder S, Liu Y, Ford OH 3rd, Mohler JL, Whang YE (2006) Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66(12):1292–1301. doi:10.1002/pros.20438

    CAS  PubMed  Google Scholar 

  • Marango J, Shimoyama M, Nishio H, Meyer JA, Min DJ, Sirulnik A, Martinez-Martinez Y et al (2008) The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 111(6):3145–3154. doi:10.1182/blood-2007-06-092122, blood-2007-06-092122 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marfella CG, Imbalzano AN (2007) The Chd family of chromatin remodelers. Mutat Res 618(1–2):30–40. doi:10.1016/j.mrfmmm.2006.07.012, S0027-5107(07)00030-9 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349. doi:10.1038/nature09784, nature09784 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD, Reinberg D (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32(4):503–518. doi:10.1016/j.molcel.2008.11.004, S1097-2765(08)00770-3 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134(3):521–533. doi:10.1016/j.cell.2008.07.020, S0092-8674(08)00938-0 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsubayashi H, Sato N, Fukushima N, Yeo CJ, Walter KM, Brune K, Sahin F, Hruban RH, Goggins M (2003) Methylation of cyclin D2 is observed frequently in pancreatic cancer but is also an age-related phenomenon in gastrointestinal tissues. Clin Cancer Res 9(4):1446–1452

    CAS  PubMed  Google Scholar 

  • Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, McNiece I et al (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68(1):190–197. doi:10.1158/0008-5472.CAN-07-3096, 68/1/190 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257. doi:10.1038/nature09165, nature09165 [pii]

    CAS  PubMed  Google Scholar 

  • Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de Keersmaecker K, McJunkin K, Zuber J et al (2010) Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 12(4):372–379. doi:10.1038/ncb2037, ncb2037 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18(7):1073–1083. doi:10.1101/gr.078261.108, gr.078261.108 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medina PP, Sanchez-Cespedes M (2008) Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics 3(2):64–68, 6153 [pii]

    PubMed  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770. doi:10.1038/nature07107, nature07107 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S et al (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41(3):365–370. doi:10.1038/ng.317, ng.317 [pii]

    CAS  PubMed  Google Scholar 

  • Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626. doi:10.1038/nature08725, nature08725 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D et al (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25):2641–2650. doi:10.1056/NEJMoa0803785, 359/25/2641 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, Muller JM et al (2010) Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464(7289):792–796. doi:10.1038/nature08839, nature08839 [pii]

    CAS  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560. doi:10.1038/nature06008, nature06008 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51. doi:10.1038/nrc1779, nrc1779 [pii]

    CAS  PubMed  Google Scholar 

  • Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schubeler D (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30(6):755–766. doi:10.1016/j.molcel.2008.05.007, S1097-2765(08)00358-4 [pii]

    CAS  PubMed  Google Scholar 

  • Mohr F, Dohner K, Buske C, Rawat VP (2011) TET genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol 39(3):272–281. doi:10.1016/j.exphem.2010.12.004, S0301-472X(10)00605-3 [pii]

    CAS  PubMed  Google Scholar 

  • Morey L, Brenner C, Fazi F, Villa R, Gutierrez A, Buschbeck M, Nervi C, Minucci S, Fuks F, Di Croce L (2008) MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol 28(19):5912–5923. doi:10.1128/MCB.00467-08, MCB.00467-08 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185. doi:10.1038/ng.518, ng.518 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morrison AJ, Shen X (2009) Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol 10(6):373–384. doi:10.1038/nrm2693, nrm2693 [pii]

    CAS  PubMed  Google Scholar 

  • Mosher RA, Melnyk CW (2010) siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 15(4):204–210. doi:10.1016/j.tplants.2010.01.002, S1360-1385(10)00005-1 [pii]

    CAS  PubMed  Google Scholar 

  • Mujtaba S, Zeng L, Zhou MM (2007) Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26(37):5521–5527. doi:10.1038/sj.onc.1210618, 1210618 [pii]

    CAS  PubMed  Google Scholar 

  • Naidu SR, Love IM, Imbalzano AN, Grossman SR, Androphy EJ (2009) The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 28(27):2492–2501. doi:10.1038/onc.2009.121, onc2009121 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishiyama M, Oshikawa K, Tsukada Y, Nakagawa T, Iemura S, Natsume T, Fan Y, Kikuchi A, Skoultchi AI, Nakayama KI (2009) CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. Nat Cell Biol 11(2):172–182. doi:10.1038/ncb1831, ncb1831 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110. doi:10.1038/nature05372, nature05372 [pii]

    PubMed  Google Scholar 

  • Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39(2):237–242. doi:10.1038/ng1972, ng1972 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okamoto I, Heard E (2009) Lessons from comparative analysis of X-chromosome inactivation in mammals. Chromosome Res 17(5):659–669. doi:10.1007/s10577-009-9057-7

    CAS  PubMed  Google Scholar 

  • Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154):714–717. doi:10.1038/nature05987, nature05987 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145(6):835–850. doi:10.1016/j.cell.2011.05.019, S0092-8674(11)00576-9 [pii]

    CAS  PubMed  Google Scholar 

  • Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T (2004) Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer 112(1):26–32. doi:10.1002/ijc.20395

    CAS  PubMed  Google Scholar 

  • Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B, Mitelman F, Johansson B (2001) Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10(4):395–404

    CAS  PubMed  Google Scholar 

  • Parthun MR (2007) Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26(37):5319–5328. doi:10.1038/sj.onc.1210602, 1210602 [pii]

    CAS  PubMed  Google Scholar 

  • Pasini D, Hansen KH, Christensen J, Agger K, Cloos PA, Helin K (2008) Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev 22(10):1345–1355. doi:10.1101/gad.470008, 22/10/1345 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12(2):136–149. doi:10.1038/nrg2904, nrg2904 [pii]

    CAS  PubMed  Google Scholar 

  • Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20(11):662–671. doi:10.1016/j.tcb.2010.08.011, S0962-8924(10)00179-0 [pii]

    CAS  PubMed  Google Scholar 

  • Peters I, Vaske B, Albrecht K, Kuczyk MA, Jonas U, Serth J (2007) Adiposity and age are statistically related to enhanced RASSF1A tumor suppressor gene promoter methylation in normal autopsy kidney tissue. Cancer Epidemiol Biomarkers Prev 16(12):2526–2532. doi:10.1158/1055-9965.EPI-07-0203, 16/12/2526 [pii]

    CAS  PubMed  Google Scholar 

  • Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068. doi:10.1038/nbt.1685, nbt.1685 [pii]

    CAS  PubMed  Google Scholar 

  • Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104(3):973–978. doi:10.1073/pnas.0610117104, 0610117104 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, Herman JG, Baylin SB (2006) Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2(3):e40. doi:10.1371/journal.pgen.0020040

    PubMed Central  PubMed  Google Scholar 

  • Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE (2003) Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 63(3):560–566

    CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115. doi:10.1038/nature05384, nature05384 [pii]

    CAS  PubMed  Google Scholar 

  • Riddihough G, Zahn LM (2010) Epigenetics. What is epigenetics? Introduction. Science 330(6004):611. doi:10.1126/science.330.6004.611, 330/6004/611 [pii]

    CAS  PubMed  Google Scholar 

  • Rio Frio T, Bahubeshi A, Kanellopoulou C, Hamel N, Niedziela M, Sabbaghian N, Pouchet C et al (2011) DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA 305(1):68–77. doi:10.1001/jama.2010.1910, 305/1/68 [pii]

    CAS  PubMed  Google Scholar 

  • Rodriguez C, Borgel J, Court F, Cathala G, Forne T, Piette J (2010) CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem Biophys Res Commun 392(2):129–134. doi:10.1016/j.bbrc.2009.12.159, S0006-291X(09)02557-1 [pii]

    CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro S (2009) Insights into SAGA function during gene expression. EMBO Rep 10(8):843–850. doi:10.1038/embor.2009.168, embor2009168 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17(3):330–339. doi:10.1038/nm.2305, nm.2305 [pii]

    CAS  PubMed  Google Scholar 

  • Rodriguez-Paredes M, Ceballos-Chavez M, Esteller M, Garcia-Dominguez M, Reyes JC (2009) The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene. Nucleic Acids Res 37(8):2449–2460. doi:10.1093/nar/gkp101, gkp101 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M, Caballero R et al (2006) A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 38(5):566–569. doi:10.1038/ng1773, ng1773 [pii]

    CAS  PubMed  Google Scholar 

  • Rosenfeld JA, Wang Z, Schones DE, Zhao K, DeSalle R, Zhang MQ (2009) Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics 10:143. doi:10.1186/1471-2164-10-143, 1471-2164-10-143 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443. doi:10.1016/j.ccr.2006.04.020, S1535-6108(06)00143-7 [pii]

    CAS  PubMed  Google Scholar 

  • Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 107(46):19915–19920. doi:10.1073/pnas.1009023107, 1009023107 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saladi SV, de la Serna IL (2010) ATP dependent chromatin remodeling enzymes in embryonic stem cells. Stem Cell Rev 6(1):62–73. doi:10.1007/s12015-010-9120-y

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santenard A, Torres-Padilla ME (2009) Epigenetic reprogramming in mammalian reproduction: contribution from histone variants. Epigenetics 4(2):80–84, 7838 [pii]

    CAS  PubMed  Google Scholar 

  • Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, Kouzarides T (2009) Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 16(1):17–22. doi:10.1038/nsmb.1534, nsmb.1534 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarma K, Reinberg D (2005) Histone variants meet their match. Nat Rev Mol Cell Biol 6(2):139–149. doi:10.1038/nrm1567, nrm1567 [pii]

    CAS  PubMed  Google Scholar 

  • Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26(37):5489–5504. doi:10.1038/sj.onc.1210616, 1210616 [pii]

    CAS  PubMed  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103(5):1412–1417. doi:10.1073/pnas.0510310103, 0510310103 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, Zhang X et al (2009) Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res 19(4):590–601. doi:10.1101/gr.086983.108, gr.086983.108 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnetz MP, Handoko L, Akhtar-Zaidi B, Bartels CF, Pereira CF, Fisher AG, Adams DJ et al (2010) CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet 6(7):e1001023. doi:10.1371/journal.pgen.1001023

    PubMed Central  PubMed  Google Scholar 

  • Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898. doi:10.1016/j.cell.2008.02.022, S0092-8674(08)00270-5 [pii]

    CAS  PubMed  Google Scholar 

  • Schuebel KE, Chen W, Cope L, Glockner SC, Suzuki H, Yi JM, Chan TA et al (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3(9):1709–1723. doi:10.1371/journal.pgen.0030157, 07-PLGE-RA-0242 [pii]

    CAS  PubMed  Google Scholar 

  • Scibetta AG, Santangelo S, Coleman J, Hall D, Chaplin T, Copier J, Catchpole S, Burchell J, Taylor-Papadimitriou J (2007) Functional analysis of the transcription repressor PLU-1/JARID1B. Mol Cell Biol 27(20):7220–7235. doi:10.1128/MCB.00274-07, MCB.00274-07 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281. doi:10.1158/0008-5472.CAN-05-3632, 66/3/1277 [pii]

    CAS  PubMed  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953. doi:10.1016/j.cell.2004.12.012, S0092867404011997 [pii]

    CAS  PubMed  Google Scholar 

  • Shur I, Socher R, Benayahu D (2006) In vivo association of CReMM/CHD9 with promoters in osteogenic cells. J Cell Physiol 207(2):374–378. doi:10.1002/jcp.20586

    CAS  PubMed  Google Scholar 

  • Sims RJ 3rd, Reinberg D (2006) Histone H3 Lys 4 methylation: caught in a bind? Genes Dev 20(20):2779–2786. doi:10.1101/gad.1468206, 20/20/2779 [pii]

    CAS  PubMed  Google Scholar 

  • Sims RJ 3rd, Chen CF, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D (2005) Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 280(51):41789–41792. doi:10.1074/jbc.C500395200, C500395200 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sims RJ 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D (2007) Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28(4):665–676. doi:10.1016/j.molcel.2007.11.010, S1097-2765(07)00744-7 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401. doi:10.1038/nature03128, nature03128 [pii]

    CAS  PubMed  Google Scholar 

  • Steger DJ, Workman JL (1996) Remodeling chromatin structures for transcription: what happens to the histones? Bioessays 18(11):875–884. doi:10.1002/bies.950181106

    CAS  PubMed  Google Scholar 

  • Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher AG, Pombo A (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9(12):1428–1435. doi:10.1038/ncb1663, ncb1663 [pii]

    CAS  PubMed  Google Scholar 

  • Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N, Simon I, Yakhini Z, Cedar H (2009) Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol 16(5):564–571. doi:10.1038/nsmb.1594, nsmb.1594 [pii]

    CAS  PubMed  Google Scholar 

  • Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123(7):1213–1226. doi:10.1016/j.cell.2005.09.038, S0092-8674(05)01165-7 [pii]

    CAS  PubMed  Google Scholar 

  • Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351(4):820–824. doi:10.1016/j.bbrc.2006.10.128, S0006-291X(06)02324-2 [pii]

    CAS  PubMed  Google Scholar 

  • Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128(4):747–762. doi:10.1016/j.cell.2007.02.010, S0092-8674(07)00191-2 [pii]

    CAS  PubMed  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476. doi:10.1038/nrg2341, nrg2341 [pii]

    CAS  PubMed  Google Scholar 

  • Svotelis A, Gevry N, Gaudreau L (2009) Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem Cell Biol 87(1):179–188. doi:10.1139/O08-138, o08-138 [pii]

    CAS  PubMed  Google Scholar 

  • Tachibana M, Matsumura Y, Fukuda M, Kimura H, Shinkai Y (2008) G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J 27(20):2681–2690. doi:10.1038/emboj.2008.192, emboj2008192 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935. doi:10.1126/science.1170116, 1170116 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takada I, Mihara M, Suzawa M, Ohtake F, Kobayashi S, Igarashi M, Youn MY et al (2007) A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol 9(11):1273–1285. doi:10.1038/ncb1647, ncb1647 [pii]

    CAS  PubMed  Google Scholar 

  • Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, Yoda K, Nomura F (2003) Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63(13):3511–3516

    CAS  PubMed  Google Scholar 

  • Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132. doi:10.1158/0008-5472.CAN-08-0325, 68/11/4123 [pii]

    CAS  PubMed  Google Scholar 

  • Tzatsos A, Pfau R, Kampranis SC, Tsichlis PN (2009) Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proc Natl Acad Sci U S A 106(8):2641–2646. doi:10.1073/pnas.0813139106, 0813139106 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, Edkins S et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523. doi:10.1038/ng.349, ng.349 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Vaquero A (2009) The conserved role of sirtuins in chromatin regulation. Int J Dev Biol 53(2–3):303–322. doi:10.1387/ijdb.082675av, 082675av [pii]

    CAS  PubMed  Google Scholar 

  • Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699. doi:10.1126/science.1165395, 1165395 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934. doi:10.1126/science.1149460, 1149460 [pii]

    CAS  PubMed  Google Scholar 

  • Vatolin S, Navaratne K, Weil RJ (2006) A novel method to detect functional microRNA targets. J Mol Biol 358(4):983–996. doi:10.1016/j.jmb.2006.02.063, S0022-2836(06)00279-8 [pii]

    CAS  PubMed  Google Scholar 

  • Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6):967–980. doi:10.1016/j.cell.2010.08.020, S0092-8674(10)00951-7 [pii]

    CAS  PubMed  Google Scholar 

  • Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L et al (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874. doi:10.1038/nature04431, nature04431 [pii]

    PubMed  Google Scholar 

  • Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, Vyskot B, Aufsatz W, Riha K (2010) siRNA-mediated methylation of Arabidopsis telomeres. PLoS Genet 6(6):e1000986. doi:10.1371/journal.pgen.1000986

    PubMed Central  PubMed  Google Scholar 

  • Walker E, Chang WY, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan NJ, Reiter JF, Stanford WL (2010) Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6(2):153–166. doi:10.1016/j.stem.2009.12.014, S1934-5909(09)00637-7 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang GG, Allis CD, Chi P (2007a) Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med 13(9):363–372. doi:10.1016/j.molmed.2007.07.003, S1471-4914(07)00146-3 [pii]

    CAS  PubMed  Google Scholar 

  • Wang GG, Allis CD, Chi P (2007b) Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol Med 13(9):373–380. doi:10.1016/j.molmed.2007.07.004, S1471-4914(07)00147-5 [pii]

    PubMed  Google Scholar 

  • Wang GG, Cai L, Pasillas MP, Kamps MP (2007c) NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9(7):804–812. doi:10.1038/ncb1608, ncb1608 [pii]

    CAS  PubMed  Google Scholar 

  • Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008a) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40(12):1478–1483. doi:10.1038/ng.250, ng.250 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K et al (2008b) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903. doi:10.1038/ng.154, ng.154 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H et al (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129. doi:10.1038/ng.268, ng.268 [pii]

    CAS  PubMed  Google Scholar 

  • Weber B, Stresemann C, Brueckner B, Lyko F (2007a) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6(9):1001–1005, 4209 [pii]

    CAS  PubMed  Google Scholar 

  • Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D (2007b) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39(4):457–466. doi:10.1038/ng1990, ng1990 [pii]

    CAS  PubMed  Google Scholar 

  • Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, Wynder T et al (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27(1):91–97. doi:10.1038/nbt.1516, nbt.1516 [pii]

    CAS  PubMed  Google Scholar 

  • Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473(7347):343–348. doi:10.1038/nature10066, nature10066 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11(7):481–492. doi:10.1038/nrc3068, nrc3068 [pii]

    CAS  PubMed  Google Scholar 

  • Wong MM, Cox LK, Chrivia JC (2007) The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem 282(36):26132–26139. doi:10.1074/jbc.M703418200, M703418200 [pii]

    CAS  PubMed  Google Scholar 

  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658. doi:10.1016/j.cell.2009.02.038, S0092-8674(09)00252-9 [pii]

    CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318. doi:10.1038/sj.onc.1210599, 1210599 [pii]

    CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9(3):206–218. doi:10.1038/nrm2346, nrm2346 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh A, Wei M, Golub SB, Yamashiro DJ, Murty VV, Tycko B (2002) Chromosome arm 16q in Wilms tumors: unbalanced chromosomal translocations, loss of heterozygosity, and assessment of the CTCF gene. Genes Chromosomes Cancer 35(2):156–163. doi:10.1002/gcc.10110

    CAS  PubMed  Google Scholar 

  • Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016. doi:10.1101/gad.1158803, 1158803 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM (2010) Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466(7303):258–262. doi:10.1038/nature09139, nature09139 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, Cerruti L et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16(3):304–311. doi:10.1038/nsmb.1568, nsmb.1568 [pii]

    CAS  PubMed  Google Scholar 

  • Zhu J, He F, Hu S, Yu J (2008) On the nature of human housekeeping genes. Trends Genet 24(10):481–484. doi:10.1016/j.tig.2008.08.004, S0168-9525(08)00223-0 [pii]

    CAS  PubMed  Google Scholar 

  • Zhu D, Fang J, Li Y, Zhang J (2009) Mbd3, a component of NuRD/Mi-2 complex, helps maintain pluripotency of mouse embryonic stem cells by repressing trophectoderm differentiation. PLoS One 4(11):e7684. doi:10.1371/journal.pone.0007684

    PubMed Central  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69. doi:10.1038/ng1929, ng1929 [pii]

    CAS  PubMed  Google Scholar 

  • Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456(7218):125–129. doi:10.1038/nature07324, nature07324 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel Rodríguez-Paredes or Manel Esteller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodríguez-Paredes, M., Esteller, M. (2014). The Fundamental Role of Epigenetic Regulation in Normal and Disturbed Cell Growth, Differentiation, and Stemness. In: Lübbert, M., Jones, P. (eds) Epigenetic Therapy of Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38404-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38404-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38403-5

  • Online ISBN: 978-3-642-38404-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics