Skip to main content

Distributed Approximation and Tracking Using Selective Gossip

  • Chapter
  • First Online:
Compressed Sensing & Sparse Filtering

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter presents selective gossip which is an algorithm that applies the idea of iterative information exchange to vectors of data. Instead of communicating the entire vector and wasting network resources, our method adaptively focuses communication on the most significant entries of the vector. We prove that nodes running selective gossip asymptotically reach consensus on these significant entries, and they simultaneously reach an agreement on the indices of entries which are insignificant. The results demonstrate that selective gossip provides significant communication savings in terms of the number of scalars transmitted. In the second part of the chapter we propose a distributed particle filter employing selective gossip. We show that distributed particle filters employing selective gossip provide comparable results to the centralized bootstrap particle filter while decreasing the communication overhead compared to using randomized gossip to distribute the filter computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bénézit F, Dimakis A, Thiran P, Vetterli M (2007) Gossip along the way: Order-optimal consensus through randomized path averaging. In: Proceedings of the Allerton Conference on Communication, Control, and Computing, Monticello

    Google Scholar 

  2. Bertsekas DP, Tsitsiklis JN (1997) Parallel and distributed computation: Numerical methods. Athena Scientific, Belmont

    Google Scholar 

  3. Boyd S, Ghosh A, Prabhakar B, Shah D (2006) Randomized gossip algorithms. IEEE Trans Info Theory 52(6):2508–2530

    Article  MathSciNet  Google Scholar 

  4. Cappé O, Moulines E, Ryden T (2005) Inference in hidden Markov models. Springer-Verlag, New York

    MATH  Google Scholar 

  5. Coates M (2004) Distributed particle filters for sensor networks. In: Proceedings of the International Symposium on Information Processing in Sensor Networks (IPSN), Berkeley

    Google Scholar 

  6. Dimakis A, Sarwate A, Wainwright M (2006) Geographic gossip: Efficient aggregation for sensor networks. In: Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN), Nashville

    Google Scholar 

  7. Dimakis AG, Kar S, Moura JMF, Rabbat MG, Scaglione A (2010) Gossip algorithms for distributed signal processing. Proc IEEE 98(11):1847–1864

    Article  Google Scholar 

  8. Doucet A, de Freitas N, Gordon N (eds) (2001) Sequential Monte Carlo methods in practice. Springer-Verlag, New York

    Google Scholar 

  9. Doucet A, Johansen M (2010) Oxford handbook of nonlinear filtering, chapter A tutorial on particle filtering and smoothing: fifteen years later. Oxford University Press, to appear

    Google Scholar 

  10. Farahmand S, Roumeliotis SI, Giannakis GB (2011) Set-membership constrained particle filter: Distributed adaptation for sensor networks. IEEE Trans Signal Process 59(9):4122–4138

    Google Scholar 

  11. Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc-F 140(2):107–113

    Google Scholar 

  12. Grimmett GR, Stirzaker DR (2001) Probability and random processes. Oxford University Press, New York

    Google Scholar 

  13. Gu D (2007) Distributed particle filter for target tracking. In: Proceedings IEEE International Conference on Robotics and Automation, Rome

    Google Scholar 

  14. Gupta P, Kumar PR (2000) The capacity of wireless networks. IEEE Trans Info Theory 46(2):388–404

    Article  MathSciNet  MATH  Google Scholar 

  15. Handschin JE, Mayne DQ (1969) Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int J Control 9(5):547–559

    Article  MathSciNet  MATH  Google Scholar 

  16. Hendrickx JM, Tsitsiklis JN (2011) Convergence of type-symmetric and cut-balanced consensus seeking systems. Submitted; available at http://arxiv.org/abs/1102.2361

  17. Hlinka O, Sluciak O, Hlawatsch F, Djurić PM, Rupp M (2010) Likelihood consensus: Principles and application to distributed particle filtering. In: The forty fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)

    Google Scholar 

  18. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001

    Google Scholar 

  19. Kokiopoulou E, Frossard P (2009) Polynomial filtering for fast convergence in distributed consensus. IEEE Trans Signal Process 57(1):342–354

    Article  MathSciNet  Google Scholar 

  20. Lee SH, West M (2009) Markov chain distributed particle filters (MCDPF). In: Proceedings of the IEEE Conference on Decision and Control, Shanghai

    Google Scholar 

  21. Mohammadi A, Asif A (2011) Consensus-based distributed unscented particle filter.In: Proceedings of the IEEE Statistical Signal Processing Workshop (SSP), 237–240

    Google Scholar 

  22. Nedić A, Ozdaglar A (2009) Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom Control 54(1):48–61

    Article  Google Scholar 

  23. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233

    Article  Google Scholar 

  24. Oreshkin BN, Coates MJ, Rabbat MG (2010) Optimization and analysis of distributed averaging with short node memory. IEEE Trans Signal Process 58(5):2850–2865

    Article  MathSciNet  Google Scholar 

  25. Oreshkin BN, Coates MJ (2010) Asynchronous distributed particle filter via decentralized evaluation of Gaussian products. In: Proceedings of the ISIF International Conference on Information Fusion, Edinburgh

    Google Scholar 

  26. Rabbat M, Nowak R, Bucklew J (2005) Robust decentralized source localization via averaging In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Philadelphia

    Google Scholar 

  27. Ristic B, Arulampalam MS (2003) Tracking a manoeuvring target using angle-only measurements: algorithms and performance. Signal Process 83(6):1223–1238

    Article  MATH  Google Scholar 

  28. Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman filter: particle filters for tracking applications. Artech House, Norwood, MA, USA

    Google Scholar 

  29. Sheng X, Hu Y-H, Ramanathan P (2005) Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network. In: Proceedings of the International Symposium on Information Processing in Sensor Networks (IPSN), Los Angeles

    Google Scholar 

  30. Sundhar Ram S, Veeravalli VV, Nedić A (2010) Distributed and recursive parameter estimation in parametrized linear state-space models. IEEE Trans Autom Control 55(2):488–492

    Article  Google Scholar 

  31. Touri B (2011) Product of random stochastic matrices and distributed averaging. PhD thesis, Univeristy of Illinois at Urbana-Champaign

    Google Scholar 

  32. Tsitsiklis JN (1984) Problems in decentralized decision making and computation. PhD Thesis, MIT

    Google Scholar 

  33. Tsitsiklis JN, Bertsekas DP, Athans M (1986) Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans Autom Control 31(9):803–812

    Article  MathSciNet  MATH  Google Scholar 

  34. Üstebay D, Castro R, Rabbat M (2011) Efficient decentralized approximation via selective gossip. IEEE J Sel Top Sign Proc 5(4):805–816

    Article  Google Scholar 

  35. Üstebay D, Oreshkin B, Coates M, Rabbat M (2008) Rates of convergence for greedy gossip with eavesdropping. In: Proceedings of the Allerton Conference on Communication, Control, and Computing. Monticello, pp 367–374

    Google Scholar 

  36. Üstebay D, Rabbat M Efficiently reaching consensus on the largest entries of a vector. In: IEEE Conference on Decision and Control (CDC) ’12, Maui, HI, USA

    Google Scholar 

  37. Xiao L, Boyd S (2004) Fast linear iterations for distributed averaging. Syst Control Lett 53(1):65–78

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhao F, Shin J, Reich J (2002) Information-driven dynamic sensor collaboration. IEEE Signal Process Mag 19(2):61–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Üstebay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Üstebay, D., Castro, R., Coates, M., Rabbat, M. (2014). Distributed Approximation and Tracking Using Selective Gossip. In: Carmi, A., Mihaylova, L., Godsill, S. (eds) Compressed Sensing & Sparse Filtering. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38398-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38398-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38397-7

  • Online ISBN: 978-3-642-38398-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics