Skip to main content

Introduction to Compressed Sensing and Sparse Filtering

  • Chapter
  • First Online:
Compressed Sensing & Sparse Filtering

Abstract

Compressed sensing is a concept bearing far-reaching implications to signal acquisition and recovery which yet continues to penetrate various engineering and scientific domains. Presently, there is a wealth of theoretical results that extend the basic ideas of compressed sensing essentially making analogies to notions from other fields of mathematics. The objective of this chapter is to introduce the reader to the basic theory of compressed sensing as emanated in the first few works on the subject. The first part of this chapter is therefore a concise exposition to compressed sensing which requires no prior background. The second half of this chapter slightly extends the theory and discusses its applicability to filtering of dynamic sparse signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelosante D, Bazerque JA, Giannakis GB (2010) Online adaptive estimation of sparse signals: where RLS meets the \(l_1\)-norm. IEEE Trans Sig Process 58:3436–3447

    Article  MathSciNet  Google Scholar 

  2. Angelosante D, Giannakis GB, Grossi E (2009) Compressed sensing of time-varying signals. In: Proceedings of the 16th international conference on, digital signal processing, pp 1–8.

    Google Scholar 

  3. Asif MS, Charles A, Romberg J, Rozell C (2011) Estimation and dynamic updating of time-varying signals with sparse variations. In: Proceedings of the international conference on acoustics, speech sig process (ICASSP), pp 3908–3911.

    Google Scholar 

  4. Asif MS, Romberg J (2009) Dynamic updating for sparse time varying signals. Proceedings of the conference on information sciences and systems, In

    Google Scholar 

  5. Ball K (2002) Convex geometry and functional analysis. Handbook of Banach space geometry. Elsevier, In

    Google Scholar 

  6. Blumensath T, Davies ME (2008) Gradient pursuits. IEEE Trans Sig Process 56(6):2370–2382

    Article  MathSciNet  Google Scholar 

  7. Blumensath T, Yaghoobi M, Davies M (2007) Iterative hard thresholding and \(l_0\) regularisation. In: Proceedings of the IEEE international conference on acoustics, speech and, signal processing, pp III-877-III-880.

    Google Scholar 

  8. Calderbank R, Howard S, Jafarpour S (2010) Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE J Sel Top Sig Process 4:358–374

    Article  Google Scholar 

  9. Candes E, Tao T (2007) The Dantzig selector: statistical estimation when \(p\) is much larger than \(n\). Ann Stat 35:2313–2351

    Article  MathSciNet  MATH  Google Scholar 

  10. Candes EJ (2006) Compressive sampling. Proceedings of the international congress of mathematicians, European Mathematical Society, Madrid, In, pp 1433–1452

    Google Scholar 

  11. Candes EJ (2008) The restricted isometry property and its implications for compressed sensing. C R Math 346:589–592

    Article  MathSciNet  MATH  Google Scholar 

  12. Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52:489–509

    Article  MathSciNet  MATH  Google Scholar 

  13. Carmi A, Gurfil P, Kanevsky D (2010) Methods for sparse signal recovery using Kalman filtering with embedded pseudo-measurement norms and quasi-norms. IEEE Trans Signal Process 58(4):2405–2409

    Article  MathSciNet  Google Scholar 

  14. Carmi A, Kanevsky D, Ramabhadran B (2010) Bayesian compressive sensing for phonetic classification. Proceedings of the international conference on acoustics, speech and signal processing, In, pp 4370–4373

    Google Scholar 

  15. Charles A, Asif MS, Romberg J, Rozell C (2011) Sparsity penalties in dynamical system estimation. Proceedings from the conference on information sciences and systems, In, pp 1–6

    Google Scholar 

  16. Chen S, Billings SA, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Control 50:1873–1896

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61

    Article  MathSciNet  Google Scholar 

  18. Cevher V, Sankaranarayanan A, Duarte M, Reddy D, Baraniuk R, Chellappa R (2008) Compressive Sensing for Background Subtraction.

    Google Scholar 

  19. DeVore RA (2007) Deterministic constructions of compressed sensing matrices. J Complex 23:918–925

    Article  MathSciNet  MATH  Google Scholar 

  20. Donoho DL, Maleki A, Montanari A (2009) Message passing algorithms for compressed sensing. Proc Natl Acad Sci US A 106(45):18914–18919

    Article  Google Scholar 

  21. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  22. Elad M, Bruckstein AM (2002) A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans Inf Theory 48:2558–2567

    Article  MathSciNet  MATH  Google Scholar 

  23. Figueiredo MAT, Nowak RD, Wright SJ (December 2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Sel Top Sig Process 1:586–597

    Article  Google Scholar 

  24. Herrmann FJ, Friedlander MP, Yilmaz O (2012) Fighting the curse of dimensionality: compressive sensing in exploration seismology. IEEE Signal Process Mag 29(3):88–100

    Article  Google Scholar 

  25. Geweke J (1996) Variable selection and model comparison in regression. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian Statistics 5. Oxford University, Press , pp 609–620

    Google Scholar 

  26. Jafarpour S, Xu W, Hassibi B, Calderbank R (2009) Efficient and robust compressed sensing using optimized expander graphs. IEEE Trans Inf Theory 55:4299–4308

    Article  MathSciNet  Google Scholar 

  27. Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56:2346–2356

    Article  MathSciNet  Google Scholar 

  28. Johnson W, Lindenstrauss J (1984) Extensions of lipschitz maps into a hilbert space. Contemp Math 26:189–206

    Article  MathSciNet  MATH  Google Scholar 

  29. Joshi S, Boyd S (2009) Sensor selection via convex optimization. IEEE Trans Signal Process 57(2):451–462

    Article  MathSciNet  Google Scholar 

  30. Julier SJ, LaViola JJ (2007) On Kalman filtering with nonlinear equality constraints. IEEE Trans Signal Process 55(6):2774–2784

    Article  MathSciNet  Google Scholar 

  31. Kalouptsidis N, Mileounis G, Babadi B, Tarokh V (2011) Adaptive algorithms for sparse system identification. Signal Process 91:1910–1919

    Article  MATH  Google Scholar 

  32. Li H, Shen C, Shi Q (2011) Real-time visual tracking using compressive sensing. In , Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) , pp 1305–1312

    Google Scholar 

  33. Mallat S, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 4:3397–3415

    Article  Google Scholar 

  34. McCulloch RE, George EI (1997) Approaches for Bayesian variable selection. Stat Sinica 7:339–374

    MATH  Google Scholar 

  35. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell (PAMI) 33(11):2259–2272

    Article  Google Scholar 

  36. Moraal PE, Grizzle JW (1995) Observer design for nonlinear system with discrete-time measurements. IEEE Trans Autom Control 40:395–404

    Article  MathSciNet  MATH  Google Scholar 

  37. Olshausen BA, Millman K (2000) Learning sparse codes with a mixture-of-Gaussians prior. Advances in Neural Information Processing Systems (NIPS), pp 841–847.

    Google Scholar 

  38. Pati YC, Rezifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27th Asilomar conference on signals, systems and computers, vol 1, pp 40–44.

    Google Scholar 

  39. Qiu C, Lu W, Vaswani N (2009) Real-time dynamic MR image reconstruction using Kalman filtered compressed sensing. Proceedings of the IEEE international conference on acoustics, speech and signal processing, In, pp 393–396

    Google Scholar 

  40. Sun H, Chiu W-Y, Jiang J, Nallanathan A, Poor HV (2012) Wideband spectrum sensing with sub-Nyquist sampling in cognitive radios. IEEE Trans Signal Process 60(11):6068–6073

    Article  MathSciNet  Google Scholar 

  41. Szarek SJ (1991) Condition numbers of random matrices. J Complex 7:131–149

    Article  MathSciNet  MATH  Google Scholar 

  42. Tian Z, Giannakis GB (2007) Compressed sensing for wideband cognitive radios. Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Hawaii, In, pp 1357–1360

    Google Scholar 

  43. Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J Roy Stat Soc Ser B 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  44. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    MathSciNet  MATH  Google Scholar 

  45. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53:4655–4666

    Article  MathSciNet  Google Scholar 

  46. Vaswani N (2008) Kalman filtered compressed sensing. In , Proceedings of the international conference on image processing (ICIP) , pp 893–896

    Google Scholar 

  47. Warnell G, Reddy D, Chellappa R (2012) Adaptive rate compressive sensing for background subtraction. Proceedings of the IEEE international conference on acoustics, speech, and, signal processing, In

    Google Scholar 

  48. Warnell G, Chellappa R (2012) Compressive sensing in visual tracking, recent developments in video surveillance. In , El-Alfy H (ed), InTech

    Google Scholar 

  49. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  50. Zhang S, Yao H, Zhou H, Sun X, Liu S (2013) Robust visual tracking based on online learning sparse representation. Neurocomputing. 100:31–40

    Article  Google Scholar 

  51. Ziniel J, Schniter P (2012) Dynamic compressive sensing of time-varying signals via approximate message passing. CoRR abs/1205.4080.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishy Y. Carmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carmi, A.Y., Mihaylova, L.S., Godsill, S.J. (2014). Introduction to Compressed Sensing and Sparse Filtering. In: Carmi, A., Mihaylova, L., Godsill, S. (eds) Compressed Sensing & Sparse Filtering. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38398-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38398-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38397-7

  • Online ISBN: 978-3-642-38398-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics