Skip to main content

Orientation Effects and Anisotropy of Properties in 0–3 Composites

  • Chapter
  • First Online:
Piezo-Active Composites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 185))

  • 1334 Accesses

Abstract

A piezo-active composite with 0–3 connectivity represents a system of isolated inclusions (either FC or ferroelectric SC) in a large matrix that may be either a polymer or FC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hereafter in Chap. 5 we use the notation “PMN–0.33PT SC” that is related to the domain-engineered SC sample with 4\(mm\) symmetry [29] and electromechanical constants listed in Table 5.2

References

  1. Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775

    Article  Google Scholar 

  2. Safari A, Akdogan EK (2006) Rapid prototyping of novel piezoelectric composites. Ferroelectrics 331:153–179

    Article  CAS  Google Scholar 

  3. Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, London

    Google Scholar 

  4. Smotrakov VG, Eremkin VV, Alyoshin VA, Tsikhotsky ES (2000) Preparation and study of single-crystal-ceramic composite. Izv Akad Nauk Ser Fiz 64:1220–1223 (in Russian)

    CAS  Google Scholar 

  5. Takahashi H, Tukamoto S, Qiu J, Tani J, Sukigara T (2003) Property of composite ceramics composed of single crystals and ceramic matrix using hybrid sintering. Jpn J Appl Phys Pt 1(42):6055–6058

    Google Scholar 

  6. Chan HLW, Cheung MC, Choy CL (1999) Study on \(\text{ BaTiO }_{3}\)/ P(VDF-TrFE) 0–3 composites. Ferroelectrics 224:113–120

    Article  Google Scholar 

  7. Lam KH, Chan HLW, Luo HS, Yin QR, Yin ZW, Choy CL (2003) Dielectric properties of 65PMN-35PT / P(VDF-TrFE) 0–3 composites. Microelectron Eng 66:792–797

    Article  CAS  Google Scholar 

  8. Ngoma JB, Cavaille JY, Paletto J (1990) Dielectric and piezoelectric properties of copolymer-ferroelectric composite. Ferroelectrics 109:205–210

    Article  CAS  Google Scholar 

  9. Chan HLW, Ng PKL, Choy CL (1999) Effect of poling procedure on the properties of lead zirconate titanate / vinylidene fluoride-trifluoroethylene composites. Appl Phys Lett 74:3029–3031

    Article  CAS  Google Scholar 

  10. Ng KL, Chan HLW, Choy CL (2000) Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. IEEE Trans Ultrason Ferroelectr Freq Control 47:1308–1315

    Article  CAS  Google Scholar 

  11. Fang D-N, Soh AK, Li C-Q, Jiang B (2001) Nonlinear behavior of 0–3 type ferroelectric composites with polymer matrices. J Mater Sci 36:5281–5288

    Article  CAS  Google Scholar 

  12. Wilson SA, Maistros GM, Whatmore RW (2005) Structure modification of 0–3 piezoelectric ceramic / polymer composites through dielectrophoresis. J Phys D: Appl Phys 38:175–182

    Article  CAS  Google Scholar 

  13. Khoroshun LP, Maslov BP, Leshchenko PV (1989) Prediction of effective properties of piezo-active composite materials. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  14. Luchaninov AG (2002) Piezoelectric effect in non-polar heterogeneous ferroelectric materials. Volgograd State Academy of Architecture and Construction, Volgograd (in Russian)

    Google Scholar 

  15. Sokolkin YuV, Pan’kov AA (2003) Electroelasticity of piezo-composites with irregular structures. Fizmatlit, Moscow (in Russian)

    Google Scholar 

  16. Poon YM, Ho CH, Wong YW, Shin FG (2007) Theoretical predictions on the effective piezoelectric coefficients of 0–3 PZT / polymer composites. J Mater Sci 42:6011–6017

    Article  CAS  Google Scholar 

  17. Levin VM, Rakovskaja MI, Kreher WS (1999) The effective thermoelectroelastic properties of microinhomogeneous materials. Int J Solids Struct 36:2683–2705

    Article  Google Scholar 

  18. Levassort F, Topolov VYu, Lethiecq M (2000) A comparative study of different methods of evaluating effective electromechanical properties of 0–3 and 1–3 ceramic / polymer composites. J Phys D: Appl Phys 33:2064–2068

    Article  CAS  Google Scholar 

  19. Glushanin SV, Topolov VYu, Krivoruchko AV (2006) Features of piezoelectric properties of 0–3-type ceramic / polymer composites. Mater Chem Phys 97:357–364

    Article  CAS  Google Scholar 

  20. Huang JH, Yu S (1994) Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos Eng 4:1169–1182

    Article  Google Scholar 

  21. Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of \(\text{ PbTiO }_{3}\) ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066

    Article  CAS  Google Scholar 

  22. Topolov VYu, Krivoruchko AV (2010) Ferroelectric \(\text{ PbTiO }_{3}\): from a single-domain state to composite components. In: Borowski M (ed) Perovskites: Structure, properties and uses. Nova Science Publishers, Hauppage, pp 481–499

    Google Scholar 

  23. COMSOL, Inc. COMSOLMultiphysics\(^{\text{ TM }}\) user’s guide (version 3.5a, 2008), http://www.comsol.com

  24. Topolov VYu, Bisegna P, Bowen CR (2011) Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals. Ferroelectrics 413:176–191

    Article  CAS  Google Scholar 

  25. Hacksbusch W (1985) Multi-grid methods and applications. Springer, Berlin

    Book  Google Scholar 

  26. Bowles JE (1996) Foundation analysis and design. McGraw-Hill, New York

    Google Scholar 

  27. Balkevich VL (1984) Technical ceramics. Stroyizdat, Moscow

    Google Scholar 

  28. Gorish AV, Dudkevich VP, Kupriyanov MF, Panich AE, Turik AV (1999) Piezoelectric device-making. Physics of ferroelectric ceramics, vol. 1. Radiotekhnika, Moscow (in Russian)

    Google Scholar 

  29. Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(\({\rm Mg}_{1/3}{\rm Nb}_{2/3}){\rm O}_{3}\)- 0.33\(\text{ PbTiO }_{3}\) single crystals. J Appl Phys 90:3471–3475

    Article  CAS  Google Scholar 

  30. Topolov VYu, Glushanin SV (2002) Effective electromechanical properties of ferroelectric piezoactive composites of the crystal-ceramic type based on \(({{\rm Pb}}_{1-x} {{\rm Ca}}_{x}) {{\rm TiO}}_{3}\). Tech Phys Lett 28:279–282

    Article  CAS  Google Scholar 

  31. Levassort F, Thi MP, Hemery H, Marechal P, Tran-Huu-Hue L-P, Lethiecq M (2006) Piezoelectric textured ceramics: effective properties and application to ultrasonic transducers. Ultrasonics 44:621–626

    Article  Google Scholar 

  32. Taunaumang H, Guy IL, Chan HLW (1994) Electromechanical properties of 1–3 piezoelectric ceramic / piezoelectric polymer composites. J Appl Phys 76:484–489

    Article  CAS  Google Scholar 

  33. Levassort F, Lethiecq M, Millar C, Pourcelot L (1998) Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans Ultrason Ferroelectr Freq Control 45:1497–1505

    Article  CAS  Google Scholar 

  34. Topolov VYu, Glushanin SV, Panich AE (2004) Features of the piezoelectric response for a novel four-component composite structure. Ferroelectrics 308:53–65

    Article  CAS  Google Scholar 

  35. Topolov VYu, Krivoruchko AV, Bisegna P (2008) Features of electromechanical properties of 1–3 composites based on \(\text{ PbTiO }_{3}\)-type ceramics. J Phys D: Appl Phys 41:035406–035408

    Article  Google Scholar 

  36. Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford, New York, Toronto

    Google Scholar 

  37. Topolov VYu, Krivoruchko AV (2009) Orientation effects in 2–2 piezocomposites based on (\(1 - x){\rm Pb}({\rm A}_{1/3}{\rm Nb}_{2/3}){\rm O}_{3}-x\text{ PbTiO }_{3}\) single crystals (A = Mg or Zn). J Appl Phys 105:074105–074107

    Article  Google Scholar 

  38. Sessler GM (1981) Piezoelectricity in polyvinylidenefluoride. J Acoust Soc Am 70:1596–1608

    Article  CAS  Google Scholar 

  39. Zhang R, Jiang B, Cao W (2003) Single-domain properties of 0.67Pb(\({\rm Mg}_{1/3}{\rm Nb}_{2/3}){\rm O}_{3}-0.33\text{ PbTiO }_{3}\) single crystals under electric field bias. Appl Phys Lett 82:787–789

    Article  CAS  Google Scholar 

  40. Poizat C, Sester M (2001) Homogénéisation périodique de composites piézoélectriques 0–3: influence de la distribution. Rev Compos Matér Av 11:65–74

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Yu. Topolov .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Topolov, V.Y., Bisegna, P., Bowen, C.R. (2014). Orientation Effects and Anisotropy of Properties in 0–3 Composites. In: Piezo-Active Composites. Springer Series in Materials Science, vol 185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38354-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38354-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38353-3

  • Online ISBN: 978-3-642-38354-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics