Contextual Modelling in Context-Aware Recommender Systems: A Generic Approach

  • Christos Mettouris
  • George A. Papadopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7652)


Context-aware recommender systems (CARS) use context data to enhance their recommendation outcomes by providing more personalized recommendations. Context modelling is a basic procedure towards this direction since it models the contextual parameters to be used during the recommendation process. Most literature works however build domain specific contextual models that only represent information of a particular domain, excluding the possibility of model sharing and reuse among other CARS. In this paper we focus on this issue and study whether a more generic modelling approach can be applied for CARS. We discuss a possible solution and show through literature review on relevant systems that the proposed solution has not yet been applied. Next, we present a novel generic contextual modelling framework for CARS, discuss its advantages and evaluate it.


Context Modelling Context Modelling Framework Context-Aware Recommender systems Context-Awareness MDA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems (TOIS) 23, 103–145 (2005)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 335–336 (2008)Google Scholar
  3. 3.
    Asoh, H., Motomura, Y., Ono, C.: An Analysis of Differences between Preferences in Real and Supposed Contexts. In: Proceedings of the 2nd Workshop on Context-Aware Recommender Systems (2010)Google Scholar
  4. 4.
    Baltrunas, L., Amatriain, X.: Towards Time-Dependant Recommendation based on Implicit Feedback. In: Workshop on Context-Aware Recommender Systems, CARS 2009 ACM Recsys, vol. 2009, pp. 1–5 (2009)Google Scholar
  5. 5.
    Baltrunas, L., Kaminskas, M., Ricci, F., Rokach, L., Shapira, B., Luke, K.: Best Usage Context Prediction for Music Tracks. In: Proceedings of the 2nd Workshop on Context-Aware Recommender Systems (2010)Google Scholar
  6. 6.
    Blanco-Fernández, Y., Pazos-Arias, J.J., Gil-Solla, A., Ramos-Cabrer, M., Barragáns-Martínez, B., López-Nores, M., García-Duque, J., Fernández-Vilas, A., Díaz-Redondo, R.P.: AVATAR: An Advanced Multi-Agent Recommender System of Personalized TV Contents by Semantic Reasoning. In: Zhou, X., Su, S., Papazoglou, M.P., Orlowska, M.E., Jeffery, K. (eds.) WISE 2004. LNCS, vol. 3306, pp. 415–421. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Bogers, T.: Movie Recommendation using Random Walks over the Contextual Graph. In: Proceedings of the 2nd Workshop on Context-Aware Recommender Systems (2010)Google Scholar
  8. 8.
    Bu, J., Tan, S., Chen, C., Wang, C., Wu, H., Zhang, L., He, X.: Music recommendation by unified hypergraph. In: MM 2010 Proceedings of the International Conference on Multimedia, p. 391 (2010)Google Scholar
  9. 9.
    Cantador, I., Castells, P.: Semantic Contextualisation in a News Recommender System. In: Workshop on Context-Aware Recommender Systems CARS 2009 in ACM Recsys, vol. 2009 (2009)Google Scholar
  10. 10.
    Costa, A., Guizzardi, R., Guizzardi, G., Filho, J.: COReS: Context-aware, Ontology-based Recommender system for Service recommendation. In: UMICS 2007, 19th International Conference on Advanced Information Systems Engineering, CAISE 2007 (2007)Google Scholar
  11. 11.
    Drumond, L., Girardi, R., Leite, A.: Architectural design of a multi-agent recommender system for the legal domain. In: Proceedings of the 11th International Conference on Artificial Intelligence and Law, ICAIL 2007, p. 183 (2007)Google Scholar
  12. 12.
    Eclipse Modeling Framework Project (EMF),
  13. 13.
    Emrich, A., Chapko, A., Werth, D.: Context-Aware Recommendations on Mobile Services: The m:Ciudad Approach. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 107–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Hinze, A., Buchanan, G.: Context-awareness in mobile tourist information systems: challenges for user interaction. In: International Workshop on Context in mobile HCI at the Conference for 7th International Conference on Human Computer Interaction with Mobile Devices and Services, Salzburg, Austria (September 2005)Google Scholar
  15. 15.
    Loizou, A., Dasmahapatra, S.: Recommender Systems for the Semantic Web. In: ECAI 2006 Recommender Systems Workshop, Trento, Italy, August 28- September 11 (2006)Google Scholar
  16. 16.
    Moscato, V., Picariello, A., Rinaldi, A.M.: A recommendation strategy based on user behavior in digital ecosystems. In: Proceedings of the International Conference on Management of Emergent Digital EcoSystems, MEDES 2010, p. 25 (2010)Google Scholar
  17. 17.
    Panniello, U., Gorgoglione, M.: A Contextual Modeling Approach to Context-Aware Recommender Systems. In: Proceedings of the 3rd Workshop on Context-Aware Recommender Systems (2011)Google Scholar
  18. 18.
    Peis, E., Morales-del-Castillo, J.M., Delgado-López, J.A.: Semantic Recommender Systems. Analysis of the State of the Topic [en linea]. (6) (2008),
  19. 19.
    Santos, O.C., Boticario, J.G.: Modeling recommendations for the educational domain. Procedia Computer Science 1(2), 2793–2800 (2010)CrossRefGoogle Scholar
  20. 20.
    Sielis, G.A., Mettouris, C., Papadopoulos, G.A., Tzanavari, A., Dols, R.M.G., Siebers, Q.: A Context Aware Recommender System for Creativity Support Tools. Journal of Universal Computer Science 17(12), 1743–1763 (2011)Google Scholar
  21. 21.
    Sielis, G.A., Mettouris, C., Tzanavari, A., Papadopoulos, G.A.: Context-Aware Recommendations using Topic Maps Technology for the Enhancement of the Creativity Process. In: Educational Recommender Systems and Technologies. IGI Global (2011)Google Scholar
  22. 22.
    Uzun, A., Räck, C., Steinert, F.: Targeting more relevant, contextual recommendations by exploiting domain knowledge. In: HetRec 2010 Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, pp. 57–62 (2010)Google Scholar
  23. 23.
    Yu, Z., Zhou, X., Zhang, D., Chin, C., Wang, X., Men, J.: Supporting Context-Aware Media Recommendations for Smart Phones. IEEE Pervasive Computing 5(3), 68–75 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christos Mettouris
    • 1
  • George A. Papadopoulos
    • 1
  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus

Personalised recommendations