Classifying Measurements in Dictated, Free-Text Radiology Reports

  • Merlijn Sevenster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7885)


Radiological measurements (e.g., ‘3.2 x 1.4 cm’) are the predominant type of quantitative data in free-text radiology reports. We report on the development and evaluation of a classifier that labels measurement descriptors with the exam they refer to: current and/or prior exam. Our classifier aggregates regular expressions as binary features in a maximum entropy model. It has average F-measure 0.942 on 2,000 annotated instances; the rule-based baseline algorithm has F-measure 0.795. Potential applications and routes for future are discussed.


Radiology report natural language processing measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, H., Stenner, S.P., Doan, S., Johnson, K.B., Waitman, L.R., Denny, J.C.: MedEx: A medication information extraction system for clinical narratives. J. Am. Med. Inform. Assoc. 17(1), 19–24 (1996)CrossRefGoogle Scholar
  2. 2.
    Cook, T.S., Zimmerman, S., Maidment, A.D., Kim, W., Boonn, W.W.: Automated extraction of radiation dose information for CT examinations. J. Am. Coll. Radiol. 7(11), 871–877 (2010)CrossRefGoogle Scholar
  3. 3.
    Aronson, A.R., Lang, F.M.: An overview of MetaMap: Historical perspective and recent advances. J. Am. Med. Inform. Assoc. 17(3), 229–236 (2010)Google Scholar
  4. 4.
    Dreyer, K.J., Kalra, M.K., Maher, M.M., Hurier, A.M., Asfaw, B.A., Schultz, T., Halpern, E.F., Thrall, J.H.: Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: Validation study. Radiology 234(2), 323–329 (2005)CrossRefGoogle Scholar
  5. 5.
    Friedman, C., Alderson, P.O., Austin, J.H.M., Cimino, J.J., Johnson, S.B.: A general natural-language text processor for clinical radiology. J. Am. Med. Inform. Assoc. 1, 161–174 (1994)CrossRefGoogle Scholar
  6. 6.
    Nigam, K.: Using maximum entropy for text classification. In: IJCAI 1999 Workshop on Machine Learning for Information Filtering, pp. 61–67 (1999)Google Scholar
  7. 7.
    Chapman, W.W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanan, B.G.: A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 34(5), 301–310 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Merlijn Sevenster
    • 1
  1. 1.Philips Research North AmericaBriarcliff ManorUSA

Personalised recommendations