Advertisement

Semi-supervised Projected Clustering for Classifying GABAergic Interneurons

  • Luis Guerra
  • Ruth Benavides-Piccione
  • Concha Bielza
  • Víctor Robles
  • Javier DeFelipe
  • Pedro Larrañaga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7885)

Abstract

A systematic classification of neuron types is a critical topic of debate in neuroscience. In this study, we propose a semi-supervised projected clustering algorithm based on finite mixture models and the expectation-maximization (EM) algorithm, that is useful for classifying neuron types. Specifically, we analyzed cortical GABAergic interneurons from different animals and cortical layers. The new algorithm, called SeSProC, is a probabilistic approach for classifying known classes and for discovering possible new groups of interneurons. Basic morphological features containing information about axonal and dendritic arborization sizes and orientations are used to characterize the interneurons. SeSProC also identifies the relevance of each feature and group separately. This article aims to present the methodological approach, reporting results for known classes and possible new groups of interneurons.

Keywords

Clustering semi-supervised finite mixture model EM projected cortical interneurons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petilla Interneuron Nomenclature Group: Petilla terminology: Nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008)Google Scholar
  2. 2.
    Marin, E.C., Jefferys, G., Komiyama, T., Zhu, H., Luo, L.: Representation of the glomerular olfactory map in the drosophila brain. Cell 149, 243–255 (2002)CrossRefGoogle Scholar
  3. 3.
    Guerra, L., McGarry, L.M., Robles, V., Bielza, C., Larrañaga, P., Yuste, R.: Comparison between supervised and unsupervised classifications of neuronal cell types: A case study. Dev. Neurobiol. 71(1), 71–82 (2011)CrossRefGoogle Scholar
  4. 4.
    Tsiola, A., Hamzei-Sichani, F., Peterlin, Z., Yuste, R.: Quantitative morphological classification of layer 5 neurons from mouse primary visual cortex. J. Compar. Neurol. 461, 415–428 (2003)CrossRefGoogle Scholar
  5. 5.
    Benavides-Piccione, R., Sichani, F.H., Yaez, I.B., DeFelipe, J., Yuste, R.: Dendritic size of pyramidal neurons differs among mouse cortical regions. Cereb. Cortex. 16, 990–1001 (2005)CrossRefGoogle Scholar
  6. 6.
    Cauli, B., Porter, J.T., Tsuzuki, K., Lambolez, B., Rossier, J., Quenet, B., Audinat, E.: Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc. Natl. Acad. Sci. 97(11), 6144–6149 (2000)CrossRefGoogle Scholar
  7. 7.
    Karagiannis, A., Gallopin, T., Csaba, D., Battaglia, D., Geoffroy, H., Rossier, J., Hillman, E., et al.: Classification of NPY-expressing neocortical interneurons. J. Neurosci. 29, 3642–3659 (2009)CrossRefGoogle Scholar
  8. 8.
    McGarry, L.M., Packer, A., Fino, E., Nikolenko, V., Sippy, T., Yuste, R.: Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes. Front. Neural Circuits. 4(12), 1–19 (2010)Google Scholar
  9. 9.
    DeFelipe, J.: Cortical interneurons: From Cajal to 2001. Prog. Brain Res. 136, 215–238 (2002)CrossRefGoogle Scholar
  10. 10.
    DeFelipe, J., et al.: New insights in the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci. 14(3), 202–216 (2013)CrossRefGoogle Scholar
  11. 11.
    McLachlan, G., Basford, K.: Mixture Models: Inference and Applications to Clustering. Marcel Dekker (1988)Google Scholar
  12. 12.
    Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press (2006)Google Scholar
  13. 13.
    Zhu, X., Goldberg, A.: Introduction to Semi-Supervised Learning. Morgan & Claypool Publishers (2009)Google Scholar
  14. 14.
    Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: A review. ACM SIGKDD Explorations Newsletter - Special Issue on Learning From Imbalanced Datasets 6(1), 90–105 (2004)CrossRefGoogle Scholar
  15. 15.
    Kriegel, H., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering and correlation clustering. ACM Trans. Knowl. Discov. Data. 3(1), 1–58 (2009)CrossRefGoogle Scholar
  16. 16.
    Law, M.H.C., Figueiredo, M.A.T., Jain, A.K.: Simultaneous feature selection and clustering using mixture models. IEEE T. Pattern Anal. 26(9), 1154–1166 (2004)CrossRefGoogle Scholar
  17. 17.
    Vellido, A., Lisboa, P.J.G., Vicente, D.: Robust analysis of MRS brain tumour data using t-GTM. Neurocomputing 69(79), 754–768 (2006)CrossRefGoogle Scholar
  18. 18.
    Ascoli, G.A., Donohue, D.E., Halavi, M.: NeuroMorpho. Org: A central resource for neuronal morphologies. J. Neurosci. 27(35), 9247–9251 (2007)CrossRefGoogle Scholar
  19. 19.
    Guerra, L., Bielza, C., Robles, V., Larrañaga, P.: Semi-supervised projected model-based clustering. Data Min. Knowl. Disc. (2012) (submitted)Google Scholar
  20. 20.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)zbMATHCrossRefGoogle Scholar
  22. 22.
    Minsky, M.: Steps toward artificial intelligence. In: Computers and Thought, pp. 406–450. McGraw-Hill (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luis Guerra
    • 1
  • Ruth Benavides-Piccione
    • 2
    • 3
  • Concha Bielza
    • 1
  • Víctor Robles
    • 4
  • Javier DeFelipe
    • 2
    • 3
  • Pedro Larrañaga
    • 1
  1. 1.Computational Intelligence Group, Departamento de Inteligencia ArtificialUniversidad Politécnica de Madrid (UPM)Boadilla del MonteSpain
  2. 2.Laboratorio Cajal de Circuitos, Centro de Tecnología BiomédicaUPMSpain
  3. 3.Instituto Cajal, CSICSpain
  4. 4.Departamento de Arquitectura y Tecnología de Sistemas InformáticosUPMBoadilla del MonteSpain

Personalised recommendations