Skip to main content

Top-Level MeSH Disease Terms Are Not Linearly Separable in Clinical Trial Abstracts

  • Conference paper
  • 2027 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7885))

Abstract

Assessments of the efficacy and safety of medical interventions are based on systematic reviews of clinical trials. Systematic reviewing requires the screening of vast amounts of publications, which is currently done by hand. To reduce the number of publications that are screened manually, we propose the automated classification of publications by disease category using Support Vector Machines. We base our classification on the ontological structure of the (MeSH) by treating all terms as their top-level disease category. Unfortunately the resulting classifier lacks sufficient sensitivity for use by systematic reviewers. We argue that this is partially due to the inseparability of the terminology into the disease categories and discuss how future work could address this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evidence-Based Medicine Working Group: Evidence-based medicine. A new approach to teaching the practice of medicine. Journal of the American Medical Association 268(17), 2420–2425 (1992)

    Google Scholar 

  2. van Valkenhoef, G., Tervonen, T., de Brock, B., Hillege, H.: Deficiencies in the transfer and availability of clinical evidence in drug development and regulation. BMC Medical Informatics and Decision Making (2012) (in press)

    Google Scholar 

  3. Haynes, R.B., McKibbon, K.A., Wilczynski, N.L., Walter, S.D., Werre, S.R.: Optimal search strategies for retrieving scientifically strong studies of treatment from Medline: analytical survey. BMJ 330(7501), 1179 (2005)

    Article  Google Scholar 

  4. Higgins, J., Green, S. (eds.): Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.2. The Cochrane Collaboration (2009), http://www.cochrane-handbook.org (updated September 2009)

  5. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck, K., Ireland, A., Mungall, C.J., Leontis, N., Rocca-Serra, P., Ruttenberg, A., Sansone, S.A., Scheuermann, R.H., Shah, N., Whetzel, P.L., Lewis, S.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology 25(11), 1251–1255 (2007)

    Article  Google Scholar 

  6. Adamusiak, T., Burdett, T., Kurbatova, N., van der Velde, K.J., Abeygunawardena, N., Antonakaki, D., Kapushesky, M., Parkinson, H., Swertz, M.A.: OntoCAT – simple ontology search and integration in java, r and REST/JavaScript. BMC Bioinformatics 12(1), 218 (2011)

    Article  Google Scholar 

  7. Krovetz, R.: Viewing morphology as an inference process. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1993, pp. 191–202. ACM, New York (1993)

    Google Scholar 

  8. Salton, G., Fox, E.A., Wu, H.: Extended boolean information retrieval. Commun. ACM 26(11), 1022–1036 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Joachims, T.: Text categorization with suport vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226 (2006)

    Google Scholar 

  11. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

  12. Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S., Harshman, R.: Using latent semantic analysis to improve access to textual information. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1988, pp. 281–285. ACM, New York (1988)

    Google Scholar 

  13. Blei, D.M.: Probabilistic topic models. Communications of the ACM 55(4), 77–84 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuiper, J., van Valkenhoef, G. (2013). Top-Level MeSH Disease Terms Are Not Linearly Separable in Clinical Trial Abstracts. In: Peek, N., Marín Morales, R., Peleg, M. (eds) Artificial Intelligence in Medicine. AIME 2013. Lecture Notes in Computer Science(), vol 7885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38326-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38326-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38325-0

  • Online ISBN: 978-3-642-38326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics