Model-Based Combination of Treatments for the Management of Chronic Comorbid Patients

  • David Riaño
  • Antoni Collado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7885)


The prevalence of chronic diseases is growing year after year. This implies that health care systems must deal with an increasing number of patients with several simultaneous pathologies (i.e., comorbid patients), which involves interventions combining primary, specialist, and hospital cares. Clinical practice guidelines provide evidence-based information on these interventions, but only on individual pathologies. This sets up the urgent need of developing ways of merging multiple single-disease interventions to provide professional assistance to comorbid patients. Here, we propose an integrated care model formalizing the treatment of chronic comorbid patients across primary, specialist and hospital cares. The model establishes the baseline of a divide-and-conquer approach to the complex task of multiple therapy combination that was tested on the comorbidity of hypertension and chronic heart failure.


Computerized Clinical Practice Guidelines Clinical Decision Support Systems Health Care Modeling Therapy Combination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abidi, S.R., Abidi, S.S.R.: Towards the Merging of Multiple Clinical Protocols and Guidelines via Ontology-Driven Modeling. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds.) AIME 2009. LNCS, vol. 5651, pp. 81–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Ammenwerth, E., Schnell-Inderst, P., Machan, C., Siebert, U.: The Effect of Electronic Prescribing on Medication Errors and Adverse Drug Events: A Systematic Review. JAMIA 15(5), 585–600 (2008)CrossRefGoogle Scholar
  3. 3.
    Boyd, C.M., Darer, J., et al.: Clinical Practice Guidelines and Quality of Care for Older Patients with Multiple Comorbid Diseases. JAMIA 294(6), 716–724 (2005)CrossRefGoogle Scholar
  4. 4.
    GuiLine Interaction Detection Architecture (Glinda) project (March 2013),
  5. 5.
    Isern, D., Moreno, A., Sánchez, D., Hajnal, A., Pedone, G., Varga, L.Z.: Agent-based execution of personalised home care treatments. Appl. Intell. 34(2), 155–180 (2012)CrossRefGoogle Scholar
  6. 6.
    López-Vallverdú, J.A., Riaño, D., Collado, A.: Rule-based combination of comorbid treatments for chronic diseases applied to hypertension, diabetes mellitus and heart failure. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth 2012/KR4HC 2012. LNCS (LNAI), vol. 7738, pp. 30–41. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Riaño, D., Real, F., et al.: An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients. JBI 45, 429–446 (2012)Google Scholar
  8. 8.
    Schedlbauer, A., et al.: What Evidence Supports the Use of Computerized Alerts and Prompts to Improve Clinicians’ Prescribing Behavior? JAMIA 16, 531–538 (2009)CrossRefGoogle Scholar
  9. 9.
    7th Report on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. US Dept. Health Human Services (2003)Google Scholar
  10. 10.
    Guia de maneig de la diabetes (March 2013) (in Catalan),
  11. 11.
    Dickstein, K., et al.: ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008. European Heart Journal 29, 2388–2442 (2008)CrossRefGoogle Scholar
  12. 12.
    Unstable angina and NSTEMI (March 2013),
  13. 13.
    Guia de maneig de la hipercolesterolèmia (March 2013) (in Catalan),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Riaño
    • 1
  • Antoni Collado
    • 2
  1. 1.Research Group on Artificial IntelligenceUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.SAGESSA GroupReusSpain

Personalised recommendations