Advertisement

Constraining Protein Docking with Coevolution Data for Medical Research

  • Ludwig Krippahl
  • Fábio Madeira
  • Pedro Barahona
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7885)

Abstract

Protein interaction is essential to all biological systems, from the assembly of multimeric complexes to processes such as transport, catalysis and gene regulation. Unfortunately, the prediction of protein-protein interactions is a difficult problem, often with modest success rates, in part because docking algorithms must filter a very large number of possibilities and then attempt to identify a correct model among many incorrect candidates. This paper presents a scoring function to estimate contacts in coevolving proteins, shows how the predicted contacts can constrain the filtering stage and significantly reduce the number of incorrect candidates, and illustrates the application of this method to the docking of two complexes of medical relevance, one involving a chromosome condensation regulator homologous to a protein responsible for retinitis pigmentosa and the other a cyclin-dependent kinase, a likely target for cancer therapy.

Keywords

Protein docking coevolution constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hwang, H., Vreven, T., Janin, J., Weng, Z.: Protein-protein docking benchmark version 4.0. Proteins 78(15) (November 2010)Google Scholar
  2. 2.
    Arkin, M.R., Wells, J.A.: Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3(4) (April 2004)Google Scholar
  3. 3.
    Archakov, A.I., Govorun, V.M., Dubanov, A.V., Ivanov, Y.D., Veselovsky, A.V., Lewi, P., Janssen, P.: Protein-protein interactions as a target for drugs in proteomics. Proteomics 3(4) (April 2003)Google Scholar
  4. 4.
    Janin, J.: Protein-protein docking tested in blind predictions: the capri experiment. Mol. Biosyst. 6(12) (December 2010)Google Scholar
  5. 5.
    Palma, P.N., Krippahl, L., Wampler, J.E., Moura, J.J.: Bigger: a new (soft) docking algorithm for predicting protein interactions. Proteins 39(4) (June 2000)Google Scholar
  6. 6.
    Krippahl, L., Barahona, P.: Applying constraint programming to rigid body protein docking. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 373–387. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 25(17) (September 1997)Google Scholar
  8. 8.
    Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D.: Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31(13) (July 2003)Google Scholar
  9. 9.
    Madeira, F., Krippahl, L.: Pycoevol - a python workflow to study protein-protein coevolution. In: Schier, J., Correia, C.M.B.A., Fred, A.L.N., Gamboa, H. (eds.) Bioinformatics, pp. 143–149. SciTePress (2012)Google Scholar
  10. 10.
    Jha, A.N., Vishveshwara, S., Banavar, J.R.: Amino acid interaction preferences in proteins. Protein Sci. 19(3) (March 2010)Google Scholar
  11. 11.
    Martin, L.C., Gloor, G.B., Dunn, S.D., Wahl, L.M.: Using information theory to search for co-evolving residues in proteins. Bioinformatics 21(22) (November 2005)Google Scholar
  12. 12.
    Gloor, G.B., Martin, L.C., Wahl, L.M., Dunn, S.D.: Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 44(19) (May 2005)Google Scholar
  13. 13.
    Gouveia-Oliveira, R., Pedersen, A.G.: Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation. Algorithms Mol. Biol. 2 (2007)Google Scholar
  14. 14.
    Göbel, U., Sander, C., Schneider, R., Valencia, A.: Correlated mutations and residue contacts in proteins. Proteins 18(4) (April 1994)Google Scholar
  15. 15.
    Pazos, F., Helmer-Citterich, M., Ausiello, G., Valencia, A.: Correlated mutations contain information about protein-protein interaction. J. Mol. Biol. 271(4) (August 1997)Google Scholar
  16. 16.
    Fodor, A.A., Aldrich, R.W.: Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 56(2) (August 2004)Google Scholar
  17. 17.
    Glaser, F., Steinberg, D.M., Vakser, I.A., Ben-Tal, N.: Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 43(2) (May 2001)Google Scholar
  18. 18.
    Singer, M.S., Vriend, G., Bywater, R.P.: Prediction of protein residue contacts with a pdb-derived likelihood matrix. Protein Eng. 15(9) (September 2002)Google Scholar
  19. 19.
    Esque, J., Oguey, C., de Brevern, A.G.: A novel evaluation of residue and protein volumes by means of laguerre tessellation. J. Chem. Inf. Model. 50(5) (May 2010)Google Scholar
  20. 20.
    Kass, I., Horovitz, A.: Mapping pathways of allosteric communication in groel by analysis of correlated mutations. Proteins 48(4) (September 2002)Google Scholar
  21. 21.
    Galitsky, B.: Revealing the set of mutually correlated positions for the protein families of immunoglobulin fold. In Silico Biol. 3(3) (2003)Google Scholar
  22. 22.
    Lockless, S.W., Ranganathan, R.: Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286(5438) (October 1999)Google Scholar
  23. 23.
    Dekker, J.P., Fodor, A., Aldrich, R.W., Yellen, G.: A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 20(10) (July 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ludwig Krippahl
    • 1
  • Fábio Madeira
    • 1
  • Pedro Barahona
    • 1
  1. 1.CENTRIA, FCT-UNLPortugal

Personalised recommendations