Advertisement

Copy–Number Alterations for Tumor Progression Inference

  • Claudia Cava
  • Italo Zoppis
  • Manuela Gariboldi
  • Isabella Castiglioni
  • Giancarlo Mauri
  • Marco Antoniotti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7885)

Abstract

Copy–number alterations (CNAs) represent an important component of genetic variations and play a significant role in many human diseases. Such alterations are related to certain types of cancers, including those of the pancreas, colon, and breast, among others. CNAs have been used as biomarkers for cancer prognosis in multiple studies, but few works report on the relation of CNAs with the disease progression. In this paper, we provide cases where the inference on the disease progression improves when exploiting CNA information. To this aim, a specific dissimilarity-based representation of patients is given. The employed framework outperforms a typical approach where patients are represented through a set of available attribute values. Three datasets were employed to validate the results of our analysis.

Keywords

CNAs tumor progression dissimilarity representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bomme, L., Bardi, G., Pandis, N., Fenger, C., Kronborg, O., Heim, S.: Clonal karyotypic abnormalities in colorectal adenomas: clues to the early genetic events in the adenoma-carcinoma sequence. Genes Chrom. Cancer 10(3), 190–196 (1994)CrossRefGoogle Scholar
  2. 2.
    Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proc. of the 23rd Int. Conf. on Machine Learning, ICML 2006, pp. 233–240 (2006)Google Scholar
  3. 3.
    Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction: Foundations and Applications. Springer (2006)Google Scholar
  4. 4.
    Kadota, M., Sato, M., Duncan, B., Ooshima, A., Yang, H.H., Diaz-Meyer, N., Gere, S., Kageyama, S.I., Fukuoka, J., Nagata, T., Tsukada, K., Dunn, B.K., Wakefield, L.M., Lee, M.P.: Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of pik3ca. Cancer Res. 69(18), 7357–7365 (2009)CrossRefGoogle Scholar
  5. 5.
    Kurashina, K., Yamashita, Y., Ueno, T., Koinuma, K., Ohashi, J., Horie, H., Miyakura, Y., Hamada, T., Haruta, H., Hatanaka, H., Soda, M., Choi, Y.L., Takada, S., Yasuda, Y., Nagai, H., Mano, H.: Chromosome copy number analysis in screening for prognosis-related genomic regions in colorectal carcinoma. Cancer Sci. 99(9), 1835–1840 (2008)CrossRefGoogle Scholar
  6. 6.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: KDD 2006, pp. 935–940 (2006)Google Scholar
  7. 7.
    Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. In: Machine Perception and Artificial Intelligence. World Scientific Publishing Company (2005)Google Scholar
  8. 8.
    Reid, J.F., Gariboldi, M., Sokolova, V., Capobianco, P., Lampis, A., Perrone, F., Signoroni, S., Costa, A., Leo, E., Pilotti, S., Pierotti, M.A.: Integrative approach for prioritizing cancer genes in sporadic colon cancer. Genes Chrom. Cancer 48(11), 953–962 (2009)CrossRefGoogle Scholar
  9. 9.
    Zoppis, I., Borsani, M., Gianazza, E., Chinello, C., Rocco, F., Albo, G., Deelder, A.M., van der Burgt, Y.E.M., Magni, F., Antoniotti, M., Mauri, G.: Analysis of correlation structures in renal cell carcinoma patient data. In: BIOINF, pp. 251–256. SciTe Press (2012)Google Scholar
  10. 10.
    Zoppis, I., Gianazza, E., Borsani, M., Chinello, C., Mainini, V., Galbusera, C., Ferrarese, C., Galimberti, G., Sorbi, S., Borroni, B., Magni, F., Antoniotti, M., Mauri, G.: Mutual information optimization for mass spectra data alignment. IEEE/ACM Trans. Comp. Biol. Bioinf. 9(3), 934–939 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudia Cava
    • 1
  • Italo Zoppis
    • 2
  • Manuela Gariboldi
    • 3
    • 4
  • Isabella Castiglioni
    • 1
  • Giancarlo Mauri
    • 2
  • Marco Antoniotti
    • 2
  1. 1.IBFM-CNRSegrateItaly
  2. 2.Department of Informatics, Systems and CommunicationsUniversity of Milano-BicoccaMilanoItaly
  3. 3.Department of Experimental OncologyFondazione IRCCS Istituto Nazionale dei TumoriMilanoItaly
  4. 4.Ifom, Fondazione Istituto FIRC Oncologia MolecolareMilanoItaly

Personalised recommendations