Learning Formal Definitions for Snomed CT from Text

  • Yue Ma
  • Felix Distel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7885)


Snomed CT is a widely used medical ontology which is formally expressed in a fragment of the Description Logic \(\mathcal{EL}\text{++}\). The underlying logics allow for expressive querying, yet make it costly to maintain and extend the ontology. In this paper we present an approach for the extraction of Snomed CT definitions from natural language text. We test and evaluate the approach using two types of texts.


Description Logic Clinical Decision Support System Target Concept Inductive Logic Programming Learn Formal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proceedings of IJCAI 2005. Morgan Kaufmann (2005)Google Scholar
  2. 2.
    Chitsaz, M., Wang, K., Blumenstein, M., Qi, G.: Concept Learning for \(\mathcal{EL}\)  + +  by Refinement and Reinforcement. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 15–26. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Cimiano, P.: Ontology learning and population from text - algorithms, evaluation and applications. Springer (2006)Google Scholar
  4. 4.
    Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of ACL/AFNLP 2009, pp. 1003–1011 (2009)Google Scholar
  5. 5.
    Paslaru Bontas Simperl, E., Tempich, C., Sure, Y.: ONTOCOM: A cost estimation model for ontology engineering. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 625–639. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Snomed Clinical Terms. College of American Pathologists, Northfield (2006)Google Scholar
  7. 7.
    Völker, J.: Learning expressive ontologies. PhD thesis, Universität Karlsruhe (2009)Google Scholar
  8. 8.
    Wächter, T., Fabian, G., Schroeder, M.: Dog4dag: Semi-automated ontology generation in OBO-Edit and Protégé. In: Proceedings of SWAT4LS 2011, pp. 119–120 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yue Ma
    • 1
  • Felix Distel
    • 1
  1. 1.Institute of Theoretical Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations