Skip to main content

Ambient pH Signalling in Yarrowia lipolytica

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 24))

Abstract

Many yeast and fungi grow over a wide pH range, and their gene expression is tailored to the pH of their environment. A conserved ambient pH signal transduction pathway has been evidenced in both ascomycetous yeasts and filamentous fungi, called Rim or Pal, respectively. The transcriptional factor Rim101p/PacC is activated by a proteolytic C-terminal processing in response to alkaline ambient pH. In A. nidulans and probably in Y. lipolytica, this processing occurs in two steps, the first one being pH signal dependent and the second one proteasomal. The Rim101p/PacC truncated form is able to activate alkaline pH-responsive genes and to repress acid-induced genes. The Rim/Pal pathway involves both a plasma membrane complex including the 7-TMD protein and putative pH sensor Rim21p/PalH, the 3-TMD protein and putative assistant of Rim21p/PalH localization Rim9p/PalI, and the arrestin-like protein Rim8p/palF, and an ESCRT-associated Rim101 processing machinery which comprises, besides Rim101p/PacC, three interactors of the ESCRT-III-subunit Snf7p/Vps32p: the calpain-like signalling protease Rim13p/PalB, a scaffold Rim20p/PalA, and YlRim23p/PalC. According to the current model, in response to alkaline ambient pH, the interaction of Rim21/PalH with Rim8p/PalF bound to the ESCRT-I subunit Vps23p would promote the ESCRT machinery recruitment to the plasma membrane, like in retroviral budding. And the interaction of the ESCRT-III-subunit Snf7 with both Rim13p/PalB and Rim20p/PalA bound to Rim101p/PacC would trigger the pH-signal-dependent proteolytic processing of Rim101/PacC. Evolutionary conserved mechanisms would control the recruitment of the ESCRT machinery to Rim/Pal proteins in fungi and to retroviral Gag proteins in animal cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arechiga-Carvajal ET, Ruiz-Herrera J (2005) The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. Eukaryot Cell 4:999–1008

    Article  PubMed  CAS  Google Scholar 

  • Arst HN Jr (1994) Regulation of gene expression by oxygen, phosphorus and pH. Prog Ind Microbiol 29:369–380

    PubMed  CAS  Google Scholar 

  • Babst M, Odorizzi G, Estepa EJ, Emr SD (2000) Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1:248–258

    Article  PubMed  CAS  Google Scholar 

  • Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282

    Article  PubMed  CAS  Google Scholar 

  • Baek YU, Martin SJ, Davis DA (2006) Evidence for novel pH-dependent regulation of Candida albicans Rim101, a direct transcriptional repressor of the cell wall beta-glycosidase Phr2. Eukaryot Cell 5:1550–1559

    Article  PubMed  CAS  Google Scholar 

  • Barwell KJ, Boysen JH, Xu W, Mitchell AP (2005) Relationship of DFG16 to the Rim101p pH Response Pathway in Saccharomyces cerevisiae and Candida albicans. Eukaryot Cell 4:890–899

    Article  PubMed  CAS  Google Scholar 

  • Bensen ES, Martin SJ, Li M, Berman J, Davis DA (2004) Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54:1335–1351

    Article  PubMed  CAS  Google Scholar 

  • Bignell E, Negrete-Urtasun S, Calcagno AM, Haynes K, Arst HN Jr, Rogers T (2005) The Aspergillus pH-responsive transcription factor PacC regulates virulence. Mol Microbiol 55:1072–1084

    Article  PubMed  CAS  Google Scholar 

  • Bishop N, Woodman P (2001) TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J Biol Chem 276:11735–11742

    Article  PubMed  CAS  Google Scholar 

  • Blanchin-Roland S (2011) Identical domains of Yarrowia lipolytica Vps23 are required for both ESCRT and Rim pathways, but the latter needs an interaction between the Vps23 UEV domain and Rim8/PalF. FEMS Yeast Res 11:473–486

    Article  PubMed  CAS  Google Scholar 

  • Blanchin-Roland S, Cordero Otero RR, Gaillardin C (1994) Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol 14:327–338

    PubMed  CAS  Google Scholar 

  • Blanchin-Roland S, Da Costa G, Gaillardin C (2005) ESCRT-I components of the endocytic machinery are required for Rim101-dependent ambient pH regulation in the yeast Yarrowia lipolytica. Microbiology 151:3627–3637

    Article  PubMed  CAS  Google Scholar 

  • Blanchin-Roland S, Da Costa G, Gaillardin C (2008) Ambient pH signalling in the yeast Yarrowia lipolytica involves YlRim23p/PalC, which interacts with Snf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI. Microbiology 154:1668–1676

    Article  PubMed  CAS  Google Scholar 

  • Boysen JH, Mitchell AP (2006) Control of Bro1-domain protein Rim20 localization by external pH, ESCRT machinery, and the Saccharomyces cerevisiae Rim101 pathway. Mol Biol Cell 17:1344–1353

    Article  PubMed  CAS  Google Scholar 

  • Calcagno-Pizarelli AM, Negrete-Urtasun S, Denison SH, Rudnicka JD, Bussink HJ, Munera-Huertas T, Stanton L, Hervas-Aguilar A, Espeso EA, Tilburn J, Arst HN Jr, Penalva MA (2007) Establishment of the ambient pH signaling complex in Aspergillus nidulans: PalI assists plasma membrane localization of PalH. Eukaryot Cell 6:2365–2375

    Article  PubMed  CAS  Google Scholar 

  • Calcagno-Pizarelli AM, Hervas-Aguilar A, Galindo A, Abenza JF, Penalva MA, Arst HN Jr (2011) Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling. J Cell Sci 124:4064–4076

    Article  PubMed  CAS  Google Scholar 

  • Calistri A, Salata C, Parolin C, Palu G (2009) Role of multivesicular bodies and their components in the egress of enveloped RNA viruses. Rev Med Virol 19:31–45

    Article  PubMed  CAS  Google Scholar 

  • Caracuel Z, Casanova C, Roncero MI, Di Pietro A, Ramos J (2003) pH response transcription factor PacC controls salt stress tolerance and expression of the P-Type Na+ -ATPase Ena1 in Fusarium oxysporum. Eukaryot Cell 2:1246–1252

    Article  PubMed  CAS  Google Scholar 

  • Castrejon F, Gomez A, Sanz M, Duran A, Roncero C (2006) The RIM101 pathway contributes to yeast cell wall assembly and its function becomes essential in the absence of mitogen-activated protein kinase Slt2p. Eukaryot Cell 5:507–517

    Article  PubMed  CAS  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    Article  PubMed  CAS  Google Scholar 

  • Cornet M, Bidard F, Schwarz P, Da Costa G, Blanchin-Roland S, Dromer F, Gaillardin C (2005) Deletions of endocytic components VPS28 and VPS32 affect growth at alkaline pH and virulence through both RIM101-dependent and RIM101-independent pathways in Candida albicans. Infect Immun 73:7977–7987

    Article  PubMed  CAS  Google Scholar 

  • Cornet M, Richard ML, Gaillardin C (2009) The homologue of the Saccharomyces cerevisiae RIM9 gene is required for ambient pH signalling in Candida albicans. Res Microbiol 160:219–223

    Article  PubMed  CAS  Google Scholar 

  • Davis D (2003) Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44:1–7

    Article  PubMed  CAS  Google Scholar 

  • Davis D, Wilson RB, Mitchell AP (2000) RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20:971–978

    Article  PubMed  CAS  Google Scholar 

  • Denison SH, Orejas M, Arst HN Jr (1995) Signaling of ambient pH in Aspergillus involves a cysteine protease. J Biol Chem 270:28519–28522

    Article  PubMed  CAS  Google Scholar 

  • Denison SH, Negrete-Urtasun S, Mingot JM, Tilburn J, Mayer WA, Goel A, Espeso EA, Penalva MA, Arst HN Jr (1998) Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in saccharomyces are homologous. Mol Microbiol 30:259–264

    Article  PubMed  CAS  Google Scholar 

  • Diez E, Alvaro J, Espeso EA, Rainbow L, Suarez T, Tilburn J, Arst HN Jr, Penalva MA (2002) Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps. EMBO J 21:1350–1359

    Article  PubMed  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • El Barkani A, Kurzai O, Fonzi WA, Ramon A, Porta A, Frosch M, Muhlschlegel FA (2000) Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol 20:4635–4647

    Article  PubMed  Google Scholar 

  • Espeso EA, Tilburn J, Sanchez-Pulido L, Brown CV, Valencia A, Arst HN Jr, Penalva MA (1997) Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J Mol Biol 274:466–480

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Roncal T, Diez E, Rainbow L, Bignell E, Alvaro J, Suarez T, Denison SH, Tilburn J, Arst HN Jr, Penalva MA (2000) On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO J 19:719–728

    Article  PubMed  CAS  Google Scholar 

  • Feuermann M, de Montigny J, Potier S, Souciet JL (1997) The characterization of two new clusters of duplicated genes suggests a ‘Lego’ organization of the yeast Saccharomyces cerevisiae chromosomes. Yeast 13:861–869

    Article  PubMed  CAS  Google Scholar 

  • Fonzi WA (2002) Role of pH response in Candida albicans virulence. Mycoses 45:16–21

    Article  PubMed  Google Scholar 

  • Futai E, Maeda T, Sorimachi H, Kitamoto K, Ishiura S, Suzuki K (1999) The protease activity of a calpain-like cysteine protease in Saccharomyces cerevisiae is required for alkaline adaptation and sporulation. Mol Gen Genet 260:559–568

    Article  PubMed  CAS  Google Scholar 

  • Futai E, Kubo T, Sorimachi H, Suzuki K, Maeda T (2001) Molecular cloning of PalBH, a mammalian homologue of the Aspergillus atypical calpain PalB. Biochim Biophys Acta 1517:316–319

    Article  PubMed  CAS  Google Scholar 

  • Galindo A, Hervas-Aguilar A, Rodriguez-Galan O, Vincent O, Arst HN Jr, Tilburn J, Penalva MA (2007) PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic 8:1346–1363

    Article  PubMed  CAS  Google Scholar 

  • Gente S, Billon-Grand G, Poussereau N, Fevre M (2001) Ambient alkaline pH prevents maturation but not synthesis of ASPA, the aspartyl protease from Penicillium roqueforti. Curr Genet 38:323–328

    Article  PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  • Glover DJ, McEwen RK, Thomas CR, Young TW (1997) pH-regulated expression of the acid and alkaline extracellular proteases of Yarrowia lipolytica. Microbiology 143:3045–3054

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lopez CI, Szabo R, Blanchin-Roland S, Gaillardin C (2002) Genetic control of extracellular protease synthesis in the yeast Yarrowia lipolytica. Genetics 160:417–427

    PubMed  CAS  Google Scholar 

  • Gonzalez-Lopez CI, Ortiz-Castellanos L, Ruiz-Herrera J (2006) The ambient pH response rim pathway in Yarrowia lipolytica: identification of YlRIM9 and characterization of its role in dimorphism. Curr Microbiol 53:8–12

    Article  PubMed  CAS  Google Scholar 

  • Herrador A, Herranz S, Lara D, Vincent O (2010) Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein. Mol Cell Biol 30:897–907

    Article  PubMed  CAS  Google Scholar 

  • Herranz S, Rodriguez JM, Bussink HJ, Sanchez-Ferrero JC, Arst HN Jr, Penalva MA, Vincent O (2005) Arrestin-related proteins mediate pH signaling in fungi. Proc Natl Acad Sci USA 102:12141–12146

    Article  PubMed  CAS  Google Scholar 

  • Hervas-Aguilar A, Rodriguez JM, Tilburn J, Arst HN Jr, Penalva MA (2007) Evidence for the direct involvement of the proteasome in the proteolytic processing of the Aspergillus nidulans zinc-finger transcription factor. PACC J Biol Chem 282:34735–34747

    Article  CAS  Google Scholar 

  • Hurley JH, Emr SD (2006) The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Shibata H, Suzuki H, Nara A, Ishidoh K, Kominami E, Yoshimori T, Maki M (2003) The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem 278:39104–39113

    Article  PubMed  CAS  Google Scholar 

  • Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Sitaraman S, Hierro A, Beach BM, Odorizzi G, Hurley JH (2005) Structural basis for endosomal targeting by the Bro1 domain. Dev Cell 8:937–947

    Article  PubMed  CAS  Google Scholar 

  • Kullas AL, Li M, Davis DA (2004) Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans. Eukaryot Cell 3:1609–1618

    Article  PubMed  CAS  Google Scholar 

  • Kullas AL, Martin SJ, Davis D (2007) Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol 66:858–871

    Article  PubMed  CAS  Google Scholar 

  • Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23:677–686

    Article  PubMed  CAS  Google Scholar 

  • Lamb TM, Xu W, Diamond A, Mitchell AP (2001) Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276:1850–1856

    Article  PubMed  CAS  Google Scholar 

  • Lambert M, Blanchin-Roland S, Le Louedec F, Lepingle A, Gaillardin C (1997) Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog. Mol Cell Biol 17:3966–3976

    PubMed  CAS  Google Scholar 

  • Li W, Mitchell AP (1997) Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63–73

    PubMed  CAS  Google Scholar 

  • Li M, Martin SJ, Bruno VM, Mitchell AP, Davis DA (2004) Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot Cell 3:741–751

    Article  PubMed  CAS  Google Scholar 

  • Lotz H, Sohn K, Brunner H, Muhlschlegel FA, Rupp S (2004) RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Eukaryot Cell 3:776–784

    Article  PubMed  CAS  Google Scholar 

  • MacCabe AP, Van den Hombergh JP, Tilburn J, Arst HN Jr, Visser J (1996) Identification, cloning and analysis of the Aspergillus niger gene pacC, a wide domain regulatory gene responsive to ambient pH. Mol Gen Genet 250:367–374

    PubMed  CAS  Google Scholar 

  • Maccheroni W Jr, May GS, Martinez-Rossi NM, Rossi A (1997) The sequence of palF, an environmental pH response gene in Aspergillus nidulans. Gene 194:163–167

    Article  PubMed  CAS  Google Scholar 

  • Madzak C, Blanchin-Roland S, Cordero Otero RR, Gaillardin C (1999) Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter. Microbiology 145:75–87

    Article  PubMed  CAS  Google Scholar 

  • Maurer KC, Urbanus JH, Planta RJ (1995) Sequence analysis of a 30 kb DNA segment from yeast chromosome XIV carrying a ribosomal protein gene cluster, the genes encoding a plasma membrane protein and a subunit of replication factor C, and a novel putative serine/threonine protein kinase gene. Yeast 11:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Mitchell BM, Wu TG, Jackson BE, Wilhelmus KR (2007) Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis. Invest Ophthalmol Vis Sci 48:774–780

    Article  PubMed  Google Scholar 

  • Muhlschlegel FA, Fonzi WA (1997) PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967

    PubMed  CAS  Google Scholar 

  • Negrete-Urtasun S, Denison SH, Arst HN Jr (1997) Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs. J Bacteriol 179:1832–1835

    PubMed  CAS  Google Scholar 

  • Negrete-Urtasun S, Reiter W, Diez E, Denison SH, Tilburn J, Espeso EA, Penalva MA, Arst HN Jr (1999) Ambient pH signal transduction in Aspergillus: completion of gene characterization. Mol Microbiol 33:994–1003

    Article  PubMed  CAS  Google Scholar 

  • Neuveglise C, Nicaud JM, Ross-Macdonald P, Gaillardin C (1998) A shuttle mutagenesis system for tagging genes in the yeast Yarrowia lipolytica. Gene 213:37–46

    Article  PubMed  CAS  Google Scholar 

  • Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13:1–55

    Article  PubMed  CAS  Google Scholar 

  • Ogrydziak DM, Demain AL, Tannenbaum SR (1977) Regulation of extracellular protease production in Candida lipolytica. Biochim Biophys Acta 497:525–538

    Article  PubMed  CAS  Google Scholar 

  • Ortoneda M, Guarro J, Madrid MP, Caracuel Z, Roncero MI, Mayayo E, Di Pietro A (2004) Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun 72:1760–1766

    Article  PubMed  CAS  Google Scholar 

  • Otero RC, Gaillardin C (1996) Dominant mutations affecting expression of pH-regulated genes in Yarrowia lipolytica. Mol Gen Genet 252:311–319

    Article  PubMed  CAS  Google Scholar 

  • Penalva MA, Arst HN Jr (2002) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66:426–446

    Article  PubMed  CAS  Google Scholar 

  • Penalva MA, Arst HN Jr (2004) Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol 58:425–451

    Article  PubMed  CAS  Google Scholar 

  • Penalva MA, Tilburn J, Bignell E, Arst HN Jr (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16:291–300

    Article  PubMed  CAS  Google Scholar 

  • Penas MM, Hervas-Aguilar A, Munera-Huertas T, Reoyo E, Penalva MA, Arst HN Jr, Tilburn J (2007) Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. Eukaryot Cell 6:960–970

    Article  PubMed  CAS  Google Scholar 

  • Porta A, Ramon AM, Fonzi WA (1999) PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol 181:7516–7523

    PubMed  CAS  Google Scholar 

  • Ramon AM, Fonzi WA (2003) Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot Cell 2:718–728

    Article  PubMed  CAS  Google Scholar 

  • Rieder SE, Banta LM, Kohrer K, McCaffery JM, Emr SD (1996) Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell 7:985–999

    PubMed  CAS  Google Scholar 

  • Rodriguez-Galan O, Galindo A, Hervas-Aguilar A, Arst HN Jr, Penalva MA (2009) Physiological involvement in pH signaling of Vps24-mediated recruitment of Aspergillus PalB cysteine protease to ESCRT-III. J Biol Chem 284:4404–4412

    Article  PubMed  CAS  Google Scholar 

  • Rollins JA (2003) The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant Microbe Interact 16:785–795

    Article  PubMed  CAS  Google Scholar 

  • Rollins JA, Dickman MB (2001) pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl Environ Microbiol 67:75–81

    Article  PubMed  CAS  Google Scholar 

  • Rothfels K, Tanny JC, Molnar E, Friesen H, Commisso C, Segall J (2005) Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol 25:6772–6788

    Article  PubMed  CAS  Google Scholar 

  • Ruiz A, Arino J (2007) Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot Cell 6:2175–2183

    Article  PubMed  CAS  Google Scholar 

  • Sadowski L, Pilecka I, Miaczynska M (2009) Signaling from endosomes: location makes a difference. Exp Cell Res 315:1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613

    PubMed  CAS  Google Scholar 

  • Serrano R, Bernal D, Simon E, Arino J (2004) Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem 279:19698–19704

    Article  PubMed  CAS  Google Scholar 

  • Slagsvold T, Pattni K, Malerod L, Stenmark H (2006) Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol 16:317–326

    Article  PubMed  CAS  Google Scholar 

  • Su SS, Mitchell AP (1993) Identification of functionally related genes that stimulate early meiotic gene expression in yeast. Genetics 133:67–77

    PubMed  CAS  Google Scholar 

  • Suarez T, Penalva MA (1996) Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol 20:529–540

    Article  PubMed  CAS  Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790

    PubMed  CAS  Google Scholar 

  • Tilburn J, Sanchez-Ferrero JC, Reoyo E, Arst HN Jr, Penalva MA (2005) Mutational analysis of the pH signal transduction component PalC of Aspergillus nidulans supports distant similarity to BRO1 domain family members. Genetics 171:393–401

    Article  PubMed  CAS  Google Scholar 

  • Tréton B, Blanchin-Roland S, Lambert M, Lepingle A, Gaillardin C (2000) Ambient pH signalling in ascomycetous yeasts involves homologues of the Aspergillus nidulans genes palF and paIH. Mol Gen Genet 263:505–513

    Article  PubMed  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamoda G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  • Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A (2007) Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun 75:2126–2135

    Article  PubMed  CAS  Google Scholar 

  • Vincent O, Rainbow L, Tilburn J, Arst HN Jr, Penalva MA (2003) YPXL/I is a protein interaction motif recognized by aspergillus PalA and its human homologue, AIP1/Alix. Mol Cell Biol 23:1647–1655

    Article  PubMed  CAS  Google Scholar 

  • Vito P, Pellegrini L, Guiet C, D’Adamio L (1999) Cloning of AIP, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction. J Biol Chem 274:1533–1540

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Mitchell AP (2001) Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J Bacteriol 183:6917–6923

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Smith FJ Jr, Subaran R, Mitchell AP (2004) Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell 15:5528–5537

    Article  PubMed  CAS  Google Scholar 

  • Yorikawa C, Takaya E, Osako Y, Tanaka R, Terasawa Y, Hamakubo T, Mochizuki Y, Iwanari H, Kodama T, Maeda T, Hitomi K, Shibata H, Maki M (2008) Human calpain 7/PalBH associates with a subset of ESCRT-III-related proteins in its N-terminal region and partly localizes to endocytic membrane compartments. J Biochem 143:731–745

    Article  PubMed  CAS  Google Scholar 

  • You BJ, Choquer M, Chunk KR (2007) The Colletotrichum acutatum gene encoding a putative pH-responsive transcription regulator is a key virulence determinant during fungal pathogenesis on citrus. Mol Plant Microbe Interact 20:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Zahedi RP, Sickmann A, Boehm AM, Winkler C, Zufall N, Schonfisch B, Guiard B, Pfanner N, Meisinger C (2006) Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol Biol Cell 17:1436–1450

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Blanchin-Roland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanchin-Roland, S. (2013). Ambient pH Signalling in Yarrowia lipolytica . In: Barth, G. (eds) Yarrowia lipolytica. Microbiology Monographs, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38320-5_6

Download citation

Publish with us

Policies and ethics