Skip to main content

Fitting Pattern Structures to Knowledge Discovery in Big Data

  • Conference paper
Formal Concept Analysis (ICFCA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7880))

Included in the following conference series:

Abstract

Pattern structures, an extension of FCA to data with complex descriptions, propose an alternative to conceptual scaling (binarization) by giving direct way to knowledge discovery in complex data such as logical formulas, graphs, strings, tuples of numerical intervals, etc. Whereas the approach to classification with pattern structures based on preceding generation of classifiers can lead to double exponent complexity, the combination of lazy evaluation with projection approximations of initial data, randomization and parallelization, results in reduction of algorithmic complexity to low degree polynomial, and thus is feasible for big data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aït-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient Implementation of Lattice Operations. ACM Transactions on Programming Languages and Systems 11(1), 115–146 (1989)

    Article  Google Scholar 

  2. Arimura, H., Uno, T.: Polynomial-Delay and Polynomial-Space Algorithms for Mining Closed Sequences, Graphs, and Pictures in Accessible Set Systems. In: Proc. SDM, pp. 1087–1098 (2009)

    Google Scholar 

  3. Babin, M.A., Kuznetsov, S.O.: Enumerating Minimal Hypotheses and Dualizing Monotone Boolean Functions on Lattices. In: Jäschke, R. (ed.) ICFCA 2011. LNCS (LNAI), vol. 6628, pp. 42–48. Springer, Heidelberg (2011)

    Google Scholar 

  4. Babin, M.A., Kuznetsov, S.O.: Computing Premises of a Minimal Cover of Functional Depedencies is Intractable. Discr. Appl. Math. 161, 742–749 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baixeries, J., Kaytoue, M., Napoli, A.: Computing Functional Dependencies with Pattern Structures. In: Proc. 9th International Conference on Concept Lattices and Their Applications (CLA 2012), Malaga (2012)

    Google Scholar 

  6. Birkhoff, B.: Lattice Theory. ACM (1991)

    Google Scholar 

  7. Chaudron, L., Maille, N.: Generalized Formal Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 357–370. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Coulet, A., Domenach, F., Kaytoue, M., Napoli, A.: Using pattern structures for analyzing ontology-based annotations of biomedical data. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS (LNAI), vol. 7880, pp. 76–91. Springer, Heidelberg (2013)

    Google Scholar 

  9. Distel, F., Sertkaya, B.: On the Complexity of Enumerating Pseudo-intents. Discrete Applied Mathematics 159(6), 450–466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Férré, S., Ridoux, O.: A Logical Generalization of Formal Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 371–385. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Férré, S., King, R.D.: Finding Motifs in Protein Secondary Structure for Use in Function Prediction. Journal of Computational Biology 13(3), 719–731 (2006)

    Article  MathSciNet  Google Scholar 

  12. Ferré, S.: The Efficient Computation of Complete and Concise Substring Scales with Suffix Trees. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 98–113. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Finn, V.K.: Plausible Reasoning in Systems of JSM Type. Itogi Nauki i Tekhniki, Seriya Informatika 15, 54–101 (1991) (in Russian)

    Google Scholar 

  14. Galitsky, B.A., Kuznetsov, S.O., Samokhin, M.V.: Analyzing Conflicts with Concept-Based Learning. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 307–322. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Galitsky, B.A., Kuznetsov, S.O., Usikov, D.: Parse Thicket Representation for Multi-sentence Search. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS 2013. LNCS, vol. 7735, pp. 153–172. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based Data Mining with Scaled Labeled Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  19. Garriga, G., Khardon, R., De Raedt, L.: Mining Closed Patterns in Relational, Graph and Network Data, Annals of Mathematics and Artificial Intelligence (2013)

    Google Scholar 

  20. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de donnees binaires. Math. Sci. Humaines 95, 5–18 (1986)

    MathSciNet  Google Scholar 

  21. Hullermeier, E.: Case-Based Approximate Reasoning. Springer (2007)

    Google Scholar 

  22. Kautz, H.A., Kearns, M.J., Selman, B.: Reasoning with characteristic models. In: Proc. AAAI 1993, pp. 1–14 (1993)

    Google Scholar 

  23. Kaytoue, M., Duplessis, S., Kuznetsov, S.O., Napoli, A.: Two FCA-Based Methods for Mining Gene Expression Data. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 251–266. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting Numerical Pattern Mining with Formal Concept Analysis. In: Proc. 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1342–1347 (2011)

    Google Scholar 

  25. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989–2001 (2011)

    Article  MathSciNet  Google Scholar 

  26. Kuznetsov, S.O.: Stability as an Estimate of the Degree of Substantiation of Hypotheses on the Basis of Operational Similarity. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2 24(12), 21–29 (1990)

    Google Scholar 

  27. Kuznetsov, S.O.: JSM-method as a machine learning method. Itogi Nauki i Tekhniki, Ser. Informatika 15, 17–50 (1991) (in Russian)

    Google Scholar 

  28. Kuznetsov, S.O.: Mathematical aspects of concept analysis. J. Math. Sci. 80(2), 1654–1698 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuznetsov, S.O.: Learning of Simple Conceptual Graphs from Positive and Negative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  30. Kuznetsov, S.O.: Complexity of Learning in Concept Lattices from Positive and Negative Examples. Discr. Appl. Math. 142, 111–125 (2004)

    Article  MATH  Google Scholar 

  31. Kuznetsov, S.O.: Pattern Structures for Analyzing Complex Data. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 33–44. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  32. Kuznetsov, S.O.: Computing Graph-Based Lattices from Smallest Projections. In: Wolff, K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger, U. (eds.) KONT/KPP 2007. LNCS (LNAI), vol. 6581, pp. 35–47. Springer, Heidelberg (2011)

    Google Scholar 

  33. Kuznetsov, S.O., Obiedkov, S.A.: Some Decision and Counting Problems of the Duquenne-Guigues Basis of Implications. Discrete Applied Mathematics 156(11), 1994–2003 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuznetsov, S.O., Samokhin, M.V.: Learning Closed Sets of Labeled Graphs for Chemical Applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  35. Kuznetsov, S.O., Revenko, A.: Finding Errors in Data Tables: An FCA-based Approach. Annals of Mathematics and Artificial Intelligence (2013)

    Google Scholar 

  36. Liquiere, M., Sallantin, J.: Structural Machine Learning with Galois Lattice and Graphs. In: Proc. ICML 1998 (1998)

    Google Scholar 

  37. Luxenburger, M.: Implications partielle dans un contexte. Math. Sci. Hum. (1991)

    Google Scholar 

  38. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Minining of Association Rules Based on Using Closed Itemset Lattices. J. Inf. Systems 24, 25–46 (1999)

    Article  Google Scholar 

  39. Ryssel, U., Distel, F., Borchmann, D.: Fast computation of proper premises. In: Proc. CLA 2011 (2011)

    Google Scholar 

  40. Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: Proc. KDD 2003, pp. 286–295. ACM Press, New York (2003)

    Google Scholar 

  41. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space Approach. Springer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuznetsov, S.O. (2013). Fitting Pattern Structures to Knowledge Discovery in Big Data. In: Cellier, P., Distel, F., Ganter, B. (eds) Formal Concept Analysis. ICFCA 2013. Lecture Notes in Computer Science(), vol 7880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38317-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38317-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38316-8

  • Online ISBN: 978-3-642-38317-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics