Skip to main content

A Quasi-linear Algorithm to Compute the Tree of Shapes of nD Images

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2013)

Abstract

To compute the morphological self-dual representation of images, namely the tree of shapes, the state-of-the-art algorithms do not have a satisfactory time complexity. Furthermore the proposed algorithms are only effective for 2D images and they are far from being simple to implement. That is really penalizing since a self-dual representation of images is a structure that gives rise to many powerful operators and applications, and that could be very useful for 3D images. In this paper we propose a simple-to-write algorithm to compute the tree of shapes; it works for nD images and has a quasi-linear complexity when data quantization is low, typically 12 bits or less. To get that result, this paper introduces a novel representation of images that has some amazing properties of continuity, while remaining discrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics, Birkhäuser (2008)

    Google Scholar 

  2. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: Proceedings of ICIP, vol. 4, pp. 41–44 (2007)

    Google Scholar 

  3. Carlinet, E., Géraud, T.: A (fair?) comparison of many max-tree computation algorithms. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 73–95. Springer, Heidelberg (2013)

    Google Scholar 

  4. Caselles, V., Meinhardt, E., Monasse, P.: Constructing the tree of shapes of an image by fusion of the trees of connected components of upper and lower level sets. Positivity 12(1), 55–73 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps. Lecture Notes in Mathematics Series, vol. 1984. Springer (2009)

    Google Scholar 

  6. Géraud, T.: Ruminations on tarjan’s union-find algorithm and connected operators. In: Proceedings of ISMM. CIVS, vol. 30, pp. 105–116. Springer (2005)

    Google Scholar 

  7. Géraud, T., Talbot, H., Van Droogenbroeck, M.: Mathematical Morphology—From Theory to Applications, ch. 12, pp. 323–353. ISTE & Wiley (2010)

    Google Scholar 

  8. Henle, M.: A Combinatorial Introduction to Topology. Dover Publications Inc. (1994)

    Google Scholar 

  9. Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Computer Vision and Image Understanding 61, 70–83 (1995)

    Article  Google Scholar 

  10. Levillain, R., Géraud, T., Najman, L.: Why and how to design a generic and efficient image processing framework: The case of the Milena library. In: Proceedings of ICIP, pp. 1941–1944 (2010), http://olena.lrde.epita.fr

  11. Levillain, R., Géraud, T., Najman, L.: Writing reusable digital topology algorithms in a generic image processing framework. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 140–153. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: A unified topological framework. Journal of Mathematical Imaging and Vision 44(1), 19–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meijster, A., Wilkinson, M.H.F.: A comparison of algorithms for connected set openings and closings. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 484–494 (2002)

    Article  Google Scholar 

  14. Meinhardt-Llopis, E.: Morphological and Statistical Techniques for the Analysis of 3D Images. Ph.D. thesis, Universitat Pompeu Fabra, Spain (March 2011)

    Google Scholar 

  15. Meyer, F.: Un algorithme optimal de ligne de partage des eaux. In: Actes du 8e congrès AFCET, pp. 847–859 (1991)

    Google Scholar 

  16. Monasse, P., Guichard, F.: Fast computation of a contrast invariant image representation. IEEE Transactions on Image Processing 9(5), 860–872 (2000)

    Article  Google Scholar 

  17. Najman, L., Géraud, T.: Discrete set-valued continuity and interpolation. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 37–48. Springer, Heidelberg (2013)

    Google Scholar 

  18. Song, Y.: A topdown algorithm for computation of level line trees. IEEE Transactions on Image Processing 16(8), 2107–2116 (2007)

    Article  MathSciNet  Google Scholar 

  19. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22(2), 215–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, Y., Géraud, T., Najman, L.: Context-based energy estimator: Application to object segmentation on the tree of shapes. In: Proceedings of ICIP (2012)

    Google Scholar 

  21. Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: Applications using tree-based image representations. In: Proceedings of ICPR (2012)

    Google Scholar 

  22. Xu, Y., Géraud, T., Najman, L.: Two applications of shape-based morphology: Blood vessel segmentation and generalisation of constrained connectivity. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 390–401. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Géraud, T., Carlinet, E., Crozet, S., Najman, L. (2013). A Quasi-linear Algorithm to Compute the Tree of Shapes of nD Images. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2013. Lecture Notes in Computer Science, vol 7883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38294-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38294-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38293-2

  • Online ISBN: 978-3-642-38294-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics