Constructive Links between Some Morphological Hierarchies on Edge-Weighted Graphs

  • Jean Cousty
  • Laurent Najman
  • Benjamin Perret
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


In edge-weighted graphs, we provide a unified presentation of a family of popular morphological hierarchies such as component trees, quasi flat zones, binary partition trees, and hierarchical watersheds. For any hierarchy of this family, we show if (and how) it can be obtained from any other element of the family. In this sense, the main contribution of this paper is the study of all constructive links between these hierarchies.


Minimum Span Tree Hasse Diagram Partial Partition Binary Partition Hierarchical Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morris, O.J., de Lee, M.J., Constantinides, A.G.: Graph theory for image analysis: an approach based on the shortest spanning tree. IEE Proc. on Communications, Radar and Signal 133(2), 146–152 (1986)Google Scholar
  2. 2.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  3. 3.
    Grady, L.: Random walks for image segmentation. PAMI 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  4. 4.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle. PAMI 31(8), 1362–1374 (2009)CrossRefGoogle Scholar
  5. 5.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Power Watersheds: A Unifying Graph Based Optimization Framework. PAMI 33(7), 1384–1399 (2011)CrossRefGoogle Scholar
  6. 6.
    Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Guigues, L., Cocquerez, J.P., Men, H.L.: Scale-sets image analysis. IJCV 68(3), 289–317 (2006)CrossRefGoogle Scholar
  8. 8.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. PAMI 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  9. 9.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011)CrossRefGoogle Scholar
  10. 10.
    Pont-Tuset, J., Marques, F.: Supervised assessment of segmentation hierarchies. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 814–827. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. TIP 7(4), 555–570 (1998)Google Scholar
  12. 12.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. CGIP 10(3), 195–223 (1979)Google Scholar
  13. 13.
    Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 187–198. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. TIP 9(4), 561–576 (2000)Google Scholar
  15. 15.
    Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: ISMM, pp. 69–76 (1994)Google Scholar
  16. 16.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. PAMI 18(12), 1163–1173 (1996)CrossRefGoogle Scholar
  17. 17.
    Meyer, F.: The dynamics of minima and contours. In: ISMM, pp. 329–336 (1996)Google Scholar
  18. 18.
    Najman, L., Cousty, J., Perret, B.: Playing with kruskal: algorithms for morphological trees in edge-weighted graphs. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013)Google Scholar
  19. 19.
    Cousty, J., Najman, L., Dias, F., Serra, J.: Morphological filtering on graphs. CVIU 117, 370–385 (2012)Google Scholar
  20. 20.
    Ouzounis, G., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 108–119. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. TIP 9(4), 561–576 (2000)Google Scholar
  22. 22.
    Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: A hierarchical image segmentation algorithm based on an observation scale. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 116–125. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps. LNCS, vol. 1984. Springer (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jean Cousty
    • 1
  • Laurent Najman
    • 1
  • Benjamin Perret
    • 1
  1. 1.Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEEUniversité Paris-EstFrance

Personalised recommendations