Advertisement

Abstract

Digital diffusion processes have been introduced to capture information about the neighborhood of points in a digital object. The properties of these processes give information about curvature, about specific symmetries and particular points on the discrete set. The evolution of diffusion is governed by the Laplace-Beltrami operator which presides to the diffusion on the manifold, as for example random walks. In this paper, we will study the discrete Laplacian operator defined on pixels in order to understand the symmetries and extract their intersections. This will lead to the identifications of particular points or information about geometry of a digital set.

Keywords

Heat Kernel Digital Object Spectral Decomposition Mesh Structure Discrete Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds.): CompIMAGE 2010. LNCS, vol. 6026. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Billingsley, P.: Convergence of probability measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., A Wiley-Interscience Publication, New York (1999)zbMATHCrossRefGoogle Scholar
  3. 3.
    Brimkov, V.E., Barneva, R.P.: Digital stars and visibility of digital objects. In: Barneva, et al. (eds.) [1], pp. 11–23Google Scholar
  4. 4.
    Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1065–1071 (2011)CrossRefGoogle Scholar
  5. 5.
    Chladni, E.F.F.: Traité d’acoustique. Chez Courcier (1809)Google Scholar
  6. 6.
    Fiorio, C., Mercat, C., Rieux, F.: Curvature estimation for discrete curves based on auto-adaptive masks of convolution. In: Barneva, et al. (eds.) [1], pp. 47–59Google Scholar
  7. 7.
    Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape Analysis Using the Auto Diffusion Function. In: Konrad, et al. (eds.) [9], pp. 1405–1413Google Scholar
  8. 8.
    Gordon, C., Webb, D.L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Amer. Math. Soc. (N.S.) 27(1), 134–138 (1992)Google Scholar
  9. 9.
    Konrad, P., Marc, A., Michael, K. (eds.): Symposium on Graphics Processing. Eurographics Association (2009)Google Scholar
  10. 10.
    Lévy, B.: Laplace-beltrami eigenfunctions towards an algorithm that ”understands” geometry. In: SMI, p. 13. IEEE Computer Society (2006)Google Scholar
  11. 11.
    Sun, J., Ovsjanikov, M., Guibas, L.: A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. In: Konrad, et al. (eds.) [9], pp. 1383–1392Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frédéric Rieux
    • 1
    • 2
  1. 1.LIRMMUniversité Montpellier 2MontpellierFrance
  2. 2.I3MUniversité de Montpellier 2Montpellier Cedex 5France

Personalised recommendations