Qualitative Comparison of Contraction-Based Curve Skeletonization Methods

  • André Sobiecki
  • Haluk C. Yasan
  • Andrei C. Jalba
  • Alexandru C. Telea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


In recent years, many new methods have been proposed for extracting curve skeletons of 3D shapes, using a mesh-contraction principle. However, it is still unclear how these methods perform with respect to each other, and with respect to earlier voxel-based skeletonization methods, from the viewpoint of certain quality criteria known from the literature. In this study, we compare six recent contraction-based curve-skeletonization methods that use a mesh representation against six accepted quality criteria, on a set of complex 3D shapes. Our results reveal previously unknown limitations of the compared methods, and link these limitations to algorithmic aspects of the studied methods.


Curve skeletons shape analysis shape representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance-driven skeletonization in voxel images. IEEE TPAMI 33(4), 709–720 (2011)CrossRefGoogle Scholar
  2. 2.
    Au, O., Tai, C., Chu, H., Cohen-Or, D., Lee, T.: Skeleton extraction by mesh contraction. Proc. ACM SIGGRAPH, 44:1–44:10 (2008)Google Scholar
  3. 3.
    Bai, X., Latecki, L.J., Liu, W.-Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE TPAMI 3(29), 449–462 (2007)CrossRefGoogle Scholar
  4. 4.
    Beucher, S.: Digital skeletons in Euclidean and geodesic spaces. Signal Processing 38(1), 127–141 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Med. Imag. Anal. 9(3), 209–221 (2005)CrossRefGoogle Scholar
  6. 6.
    Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via laplacian based contraction. In: Proc. SMI, pp. 187–197 (2010)Google Scholar
  7. 7.
    Chang, M., Leymarie, F., Kimia, B.: Surface reconstruction from point clouds by transforming the medial scaffold. CVIU (113), 1130–1146 (2009)Google Scholar
  8. 8.
    Cornea, N., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE TVCG 13(3), 530–548 (2006)Google Scholar
  9. 9.
    Damon, J.: Global medial structure of regions in R 3. Geometry and Topology 10, 2385–2429 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dey, T., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: Proc. SGP, pp. 143–152 (2006)Google Scholar
  11. 11.
    Frey, P.: YAMS: a fully automatic adaptive isotropic surface remeshing procedure. tech. rep. 0252, INRIA (November 2001),
  12. 12.
    Giblin, P., Kimia, B.: A formal classification of 3D medial axis points and their local geometry. IEEE TPAMI 26(2), 238–251 (2004)CrossRefGoogle Scholar
  13. 13.
    Hassouna, M., Farag, A.: Variational curve skeletons using gradient vector flow. IEEE TPAMI 31(12), 2257–2274 (2009)CrossRefGoogle Scholar
  14. 14.
    Hesselink, W., Roerdink, J.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE TPAMI 30(12), 2204–2217 (2008)CrossRefGoogle Scholar
  15. 15.
    Jalba, A., Kustra, J., Telea, A.: Surface and curve skeletonization of large meshes on the GPU. IEEE TPAMI (2012), doi:10.1109/TPAMI.2012.212Google Scholar
  16. 16.
    Lantuéjoul, C.: La squelettisation et son application aux mesures topologiques de mosaiques polycristallines. PhD thesis, School of Mines, Paris (1979)Google Scholar
  17. 17.
    Leymarie, F., Kimia, B.: The medial scaffold of 3D unorganized point clouds. IEEE TVCG 29(2), 313–330 (2007)Google Scholar
  18. 18.
    Ma, J., Bae, S., Choi, S.: 3D medial axis point approximation using nearest neighbors and the normal field. Vis. Comput. 28(1), 7–19 (2012)CrossRefGoogle Scholar
  19. 19.
    Meyer, F.: Skeletons and perceptual graphs. Signal Processing 16(4), 335–363 (1989)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ogniewicz, R.L., Kubler, O.: Hierarchic Voronoi skeletons. Patt. Recog. (28), 343–359 (1995)Google Scholar
  21. 21.
    Palágyi, K., Kuba, A.: Directional 3D thinning using 8 subiterations. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 325–336. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Pizer, S., Siddiqi, K., Szekely, G., Damon, J., Zucker, S.: Multiscale medial loci and their properties. IJCV 55(2-3), 155–179 (2003)CrossRefGoogle Scholar
  23. 23.
    Prohaska, S., Hege, H.C.: Fast visualization of plane-like structures in voxel data. In: Proc. IEEE Visualization, pp. 29–36 (2002)Google Scholar
  24. 24.
    Reniers, D., van Wijk, J.J., Telea, A.: Computing multiscale curve and surface skeletons of genus 0 shapes using a global importance measure. IEEE TVCG 14(2), 355–368 (2008)Google Scholar
  25. 25.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  26. 26.
    Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L.: On-the-fly curve-skeleton computation for 3d shapes. CGF 26(3), 323–328 (2007)Google Scholar
  27. 27.
    Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications. Springer (2009)Google Scholar
  28. 28.
    Sud, A., Foskey, M., Manocha, D.: Homotopy-preserving medial axis simplification. In: Proc. SPM, pp. 103–110 (2005)Google Scholar
  29. 29.
    Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons. CGF 31(5), 1735–1744 (2012)Google Scholar
  30. 30.
    Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point clouds. ACM TOG 28(3), 71:1–71:9 (2009)Google Scholar
  31. 31.
    Telea, A., Jalba, A.: Computing curve skeletons from medial surfaces of 3D shapes. In: Proc. TPCG, pp. 137–145 (2012)Google Scholar
  32. 32.
    Telea, A., van Wijk, J.J.: An augmented fast marching method for computing skeletons and centerlines. In: Proc. VisSym, pp. 251–259 (2002)Google Scholar
  33. 33.
    Univ. of Pisa. MeshLab mesh processing toolkit (2012),
  34. 34.
    Yasan, H.: Contraction-based curve skeletonization of 3D meshes, MSc thesis, Dept. of Computer Science, TU Eindhoven, the Netherlands (2012),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • André Sobiecki
    • 1
  • Haluk C. Yasan
    • 2
  • Andrei C. Jalba
    • 2
  • Alexandru C. Telea
    • 1
  1. 1.Institute Johann BernoulliUniversity of GroningenThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceTU EindhovenThe Netherlands

Personalised recommendations