Two Applications of Shape-Based Morphology: Blood Vessels Segmentation and a Generalization of Constrained Connectivity

  • Yongchao Xu
  • Thierry Géraud
  • Laurent Najman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


Connected filtering is a popular strategy that relies on tree-based image representations: for example, one can compute an attribute on each node of the tree and keep only the nodes for which the attribute is sufficiently strong. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is done not in the space of the image, but on the space of shapes built from the image. Such a processing, that we called shape-based morphology [30], is a generalization of the existing tree-based connected operators. In this paper, two different applications are studied: in the first one, we apply our framework to blood vessels segmentation in retinal images. In the second one, we propose an extension of constrained connectivity. In both cases, quantitative evaluations demonstrate that shape-based filtering, a mere filtering step that we compare to more evolved processings, achieves state-of-the-art results.


Minimum Span Tree Retinal Image Manual Segmentation Active Contour Model True Negative Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Diri, B., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Transactions on Medical Imaging 28(9), 1488–1497 (2009)CrossRefGoogle Scholar
  2. 2.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011)CrossRefGoogle Scholar
  3. 3.
    Breen, E., Jones, R.: Attribute openings, thinnings, and granulometries. CVIU 64(3), 377–389 (1996)Google Scholar
  4. 4.
    Cao, F., Musé, P., Sur, F.: Extracting meaningful curves from images. JMIV 22, 159–181 (2005)CrossRefGoogle Scholar
  5. 5.
    DRIVE: Digital Retinal Images for Vessel Extraction,
  6. 6.
    Felzenszwalb, P., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  7. 7.
    Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: A hierarchical image segmentation algorithm based on an observation scale. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 116–125. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Hoover, A., Kouznetsova, V., Goldbaum, M.H.: Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging 19, 203–210 (2000)CrossRefGoogle Scholar
  9. 9.
    Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. PAMI 25(1), 131–137 (2003)CrossRefGoogle Scholar
  10. 10.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1987)CrossRefGoogle Scholar
  11. 11.
    Levillain, R., Géraud, T., Najman, L.: Why and how to design a generic and efficient image processing framework: The case of the Milena library. In: Proc. of ICIP, pp. 1941–1944 (2010),
  12. 12.
    Martínez-Pérez, M.E., Hughes, A.D., Stanton, A.V., Thom, S.A., Bharath, A.A., Parker, K.H.: Retinal blood vessel segmentation by means of scale-space analysis and region growing. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 90–97. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)Google Scholar
  14. 14.
    Mendonça, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  15. 15.
    Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. on Image Processing 9(5), 860–872 (2000)CrossRefGoogle Scholar
  16. 16.
    Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. Journal of Mathematical Imaging and Vision 40, 231–247 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Najman, L., Cousty, J., Perret, B.: Playing with kruskal: algorithms for morphological trees in edge-weighted graphs. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. PAMI 18(12), 1163–1173 (1996)CrossRefGoogle Scholar
  19. 19.
    Niemeijer, M., Staal, J.J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Fitzpatrick, J.M., Sonka, M. (eds.) SPIE Medical Imaging, vol. 5370, pp. 648–656. SPIE (2004)Google Scholar
  20. 20.
    Ouzounis, G., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 108–119. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators and filters by reconstruction. IEEE Trans. on Image Processing 3(8), 1153–1160 (1995)zbMATHCrossRefGoogle Scholar
  22. 22.
    Salembier, P., Wilkinson, M.: Connected operators. IEEE Signal Processing Mag. 26(6), 136–157 (2009)CrossRefGoogle Scholar
  23. 23.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, New York (1982)zbMATHGoogle Scholar
  24. 24.
    Soille, P.: Constrained connectivity for hierarchical image decomposition and simplification. PAMI 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  25. 25.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  26. 26.
    STARE: STructured Analysis of the Retina,
  27. 27.
    Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. PAMI 29(2), 272–285 (2007)CrossRefGoogle Scholar
  28. 28.
    Vachier, C., Meyer, F.: Extinction values: A new measurement of persistence. In: IEEE Workshop on Non Linear Signal/Image Processing, pp. 254–257 (1995)Google Scholar
  29. 29.
    Xu, Y., Géraud, T., Najman, L.: Context-based energy estimator: Application to object segmentation on the tree of shapes. In: ICIP, pp. 1577–1580. IEEE (2012)Google Scholar
  30. 30.
    Xu, Y., Géraud, T., Najman, L.: Morphological Filtering in Shape Spaces: Applications using Tree-Based Image Representations. In: Proc. of ICPR, pp. 485–488 (2012)Google Scholar
  31. 31.
    Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. ITIP 10(7), 1010–1019 (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yongchao Xu
    • 1
    • 2
  • Thierry Géraud
    • 1
  • Laurent Najman
    • 2
  1. 1.EPITA Research and Development Laboratory (LRDE)France
  2. 2.LIGM, Équipe A3SI, ESIEEUniversité Paris-EstFrance

Personalised recommendations