From Extrema Relationships to Image Simplification Using Non-flat Structuring Functions

  • Guilherme Polo
  • Neucimar J. Leite
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


Image simplification plays a fundamental role in Image Processing to improve results in complex tasks such as segmentation. The field of Mathematical Morphology (MM) itself has established many ways to perform such improvements. In this paper, we present a new approach for image simplification which takes into account erosion and dilation from MM. The proposed method is not self-dual and only single-band signals under a discrete domain are considered. Our main focus is on the creation of concave structuring functions based on a relation between signal extrema. This relation is given by two extrema according to their degree of separation (distance) and the respective heights (contrast). From these features, a total order relation is produced, thus supplying a way to progressively simplify the signal. Some two-dimensional images are considered here to illustrate in practice this simplification behavior.


Mathematical Morphology Regional Extrema Concave Structuring Functions Image Simplification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertrand, G.: On the Dynamics. Image Vision Comput. 25(4), 447–454 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beucher, S., Meyer, F.: The Morphological Approach to Segmentation: The Watershed Transformation. In: Mathematical Morphology in Image Processing. Marcel Dekker (1993)Google Scholar
  3. 3.
    van den Boomgaard, R., Dorst, L., Makram-Ebeid, S., Schavemaker, J.G.M.: Quadratic Structuring Functions in Mathematical Morphology. In: Mathematical Morphology and its Applications to Image and Signal Processing. Kluwer (1996)Google Scholar
  4. 4.
    Dorini, L.B., Leite, N.J.: Multiscale Morphological Image Simplification. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 413–420. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Grimaud, M.: A New Measure of Contrast: The Dynamics. In: Proc. SPIE, Image Algebra and Morphological Image Processing III, vol. 1769, pp. 292–305 (1992)Google Scholar
  6. 6.
    Hagyard, D., Razaz, M., Atkin, P.: Analysis of Watershed Algorithms for Greyscale Images. ICIP 3, 41–44 (1996)Google Scholar
  7. 7.
    Jackway, P.T., Deriche, M.: Scale-Space Properties of the Multiscale Morphological Dilation-Erosion. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 38–51 (1996)CrossRefGoogle Scholar
  8. 8.
    Lindeberg, T., ter Haar Romeny, B.M.: Linear Scale-Space: Basic Theory. In: Geometry-Driven Diffusion in Computer Vision. Kluwer (1994)Google Scholar
  9. 9.
    Meyer, F.: Levelings, Image Simplification Filter for Segmentation. J. Math. Imaging Vision, 59–72 (2004)Google Scholar
  10. 10.
    Meyer, F., Serra, J.: Contrasts and Activity Lattice. Signal Process 16(4), 303–317 (1989)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pitas, I., Venetsanopoulos, A.N.: Order Statistics in Digital Image Processing. P. IEEE 80(12), 1893–1921 (1992)CrossRefGoogle Scholar
  12. 12.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press (1982)Google Scholar
  13. 13.
    Serra, J., Salembier, P.: Connected Operators and Pyramids. In: Proc. SPIE, Image Algebra and Morphological Image Processing IV, vol. 2030, pp. 65–76 (1993)Google Scholar
  14. 14.
    Silva, A.G., Lotufo, R.A.: Efficient Computation of New Extinction Values from Extended Component Tree. Pattern Recogn. Lett. 32(1), 79–90 (2011)CrossRefGoogle Scholar
  15. 15.
    Vachier, C., Vincent, L.: Valuation of Image Extrema Using Alternating Filters by Reconstruction. In: Neural, Morphological, and Stochastic Methods in Image and Signal Processing, pp. 94–103 (1995)Google Scholar
  16. 16.
    Wilson, S.S.: Vector Morphology and Iconic Neural Networks. IEEE Trans. Syst. Man Cybern. 19(6), 1636–1644 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guilherme Polo
    • 1
  • Neucimar J. Leite
    • 1
  1. 1.Institute of ComputingUniversity of Campinas, UNICAMPCampinasBrazil

Personalised recommendations