Skip to main content

Inf-structuring Functions and Self-dual Marked Flattenings in bi-Heyting Algebra

  • Conference paper
Book cover Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7883))

Abstract

This paper introduces a generalization of self-dual marked flattenings defined in the lattice of mappings. This definition provides a way to associate a self-dual operator to every mapping that decomposes an element into sub-elements (i.e. gives a cover). Contrary to classical flattenings whose definition relies on the complemented structure of the powerset lattices, our approach uses the pseudo relative complement and supplement of the bi-Heyting algebra and a new notion of inf-structuring functions that provides a very general way to structure the space. We show that using an inf-structuring function based on connections allows to recover the original definition of marked flattenings and we provide, as an example, a simple inf-structuring function whose derived self-dual operator better preserves contrasts and does not introduce new pixel values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braga-Neto, U., Goutsias, J.: A theoretical tour of connectivity in image processing and analysis. JMIV 19(1), 5–31 (2003)

    Article  MathSciNet  Google Scholar 

  2. Crespo, J.: Adjacency stable connected operators and set levelings. IVC 28(10), 1483–1490 (2010)

    Article  Google Scholar 

  3. Heijmans, H.J.A.M.: Self-dual morphological operators and filters. JMIV 6, 15–36 (1996)

    Article  MathSciNet  Google Scholar 

  4. Heijmans, H.J.A.M., Keshet, R.: Inf-semilattice approach to self-dual morphology. JMIV 17(1), 55–80 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Keshet, R.: Shape-tree semilattice. JMIV 22(2-3), 309–331 (2005)

    Article  MathSciNet  Google Scholar 

  6. Lawvere, F.W.: Intrinsic co-heyting boundaries and the leiniz rule in certain toposes. In: Category Theory. LNM, vol. 1488, pp. 279–281. Springer (1991)

    Google Scholar 

  7. Meyer, F.: From connected operators to levelings. In: Mathematical Morphology and its Applications to Image and Signal Processing, pp. 191–198. Kluwer (1998)

    Google Scholar 

  8. Meyer, F.: The levelings. In: Mathematical Morphology and its Applications to Image and Signal Processing, pp. 199–206. Kluwer (1998)

    Google Scholar 

  9. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE TIP 9(5), 860–872 (2000)

    Google Scholar 

  10. Perret, B., Lefèvre, S., Collet, C.: Toward a new axiomatic for hyper-connections. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 85–95. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Perret, B., Lefèvre, S., Collet, C., Slezak, É.: Hyperconnections and hierarchical representations for grayscale and multiband image processing. IEEE TIP 21(1), 14–27 (2012)

    MATH  Google Scholar 

  12. Reyes, G.E., Zolfaghari, H.: Bi-heyting algebras, toposes and modalities. Journal of Philosophical Logic 25, 25–43 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Roerdink, J.B.T.M.: Adaptivity and group invariance in mathematical morphology. In: IEEE ICIP 2009, pp. 2253–2256 (2009)

    Google Scholar 

  14. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE TIP 7(4), 555–570 (1998)

    Google Scholar 

  15. Serra, J.: The centre and self-dual filtering. In: Image Analysis and Mathematical Morphology. II: Theoretical Advances, pp. 159–180. Academic Press (1988)

    Google Scholar 

  16. Serra, J.: Mathematical morphology for boolean lattices. In: Image Analysis and Mathematical Morphology. II: Theoretical Advances, pp. 37–58. Academic Press (1988)

    Google Scholar 

  17. Serra, J.: Connectivity on complete lattices. JMIV 9(3), 231–251 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Serra, J.: Connections for sets and functions. Fundam. Inform. 41, 147–186 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Serra, J., Vachier, C., Meye, F.: Levelings. In: Mathematical Morphology, pp. 199–228. ISTE and John Wiley & Sons (2010)

    Google Scholar 

  20. Soille, P.: Beyond self-duality in morphological image analysis. IVC 23, 249–257 (2005)

    Article  Google Scholar 

  21. Stell, J.G.: Relations in mathematical morphology with applications to graphs and rough sets. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 438–454. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Stell, J.G., Worboys, M.F.: The algebraic structure of sets of regions. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 163–174. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  23. Vickers, S.: Topology via Logic. Cambridge University Press (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perret, B. (2013). Inf-structuring Functions and Self-dual Marked Flattenings in bi-Heyting Algebra. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2013. Lecture Notes in Computer Science, vol 7883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38294-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38294-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38293-2

  • Online ISBN: 978-3-642-38294-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics