Generalizations of various random tessellation models generated by Poisson point processes are proposed and their functional probability P(K) is given. They are interpreted as characteristics of Boolean random functions models, which provide a generic way of simulation of general random tessellations.


Voronoi tessellation random tessellation Boolean random function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altendorf, H., Latourte, F., Saintoyant, L., Jeulin, D., Faessel, M.: Analysis and Stochastic Modeling of the Microstructures of Steel P91/P92 for Fracturation Studies at Welding Joints, submitted to ECS 11, Kaiserslautern (July 2013)Google Scholar
  2. 2.
    Calka, P.: Asymptotic methods for random tessellations. In: Spodarev, E. (ed.) Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics, vol. 2068, ch. 6, Springer (2013)Google Scholar
  3. 3.
    Cox, D.R.: Some statistical methods connected with series of events. Journal of the Royal Statistical Society. Series B 17, 129–164 (1955)zbMATHGoogle Scholar
  4. 4.
    Gilbert, E.N.: Random subdivisions of space into crystals. The Annals of Mathematical Statistics 33, 958–972 (1962)Google Scholar
  5. 5.
    Jeulin, D.: Modèles de Fonctions Aléatoires multivariables. Sci. Terre 30, 225–256 (1991)Google Scholar
  6. 6.
    Jeulin, D.: Modèles Morphologiques de Structures Aléatoires et de Changement d’Echelle. Thèse de Doctorat d’Etat ès Sciences Physiques, Université of Caen (1991)Google Scholar
  7. 7.
    Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Sol. Str. 40, 3647–3679 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Labelle, F., Shewchuk, J.R.: Anisotropic Voronoi Diagrams and Guaranteed-Quality Anisotropic Mesh Generation. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, San Diego, pp. 191–200 (2003)Google Scholar
  9. 9.
    Lautensack, C., Zuyev, S.: Random Laguerre Tessellations. Advances in Applied Probability 40, 630–650 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lautensack, C.: Fitting three-dimensional Laguerre tessellations to foam structures. Journal of Applied Statistics 35(9), 985–995 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Matheron, G.: Introduction à la théorie des ensembles aléatoires. Cahiers du Centre de Morphologie Mathématique, Fascicule 4 (1969)Google Scholar
  12. 12.
    Matheron, G.: Random sets and Integral Geometry. Wiley (1975)Google Scholar
  13. 13.
    Miles, R.E.: Random Points, Sets and Tessellations on the Surface of a Sphere, Sankhyā. The Indian Journal of Statistics, Series A, 145–174 (1971)Google Scholar
  14. 14.
    Møller, J.: Random Johnson-Mehl tessellations. Advances in Applied Probability 24, 814–844 (1992)Google Scholar
  15. 15.
    Scheike, T.H.: Anisotropic growth of Voronoi Cells. Advances in Applied Probability 26, 43–53 (1994)Google Scholar
  16. 16.
    Serra, J.: Image analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  17. 17.
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. J. Wiley, New York (1987)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dominique Jeulin
    • 1
  1. 1.Centre de Morphologie Mathématique, Mathématiques et SystémesFontainebleauFrance

Personalised recommendations