Towards Morphological Image Regularization Using the Counter-Harmonic Mean

  • Jorge Larrey-Ruiz
  • Rafael Verdú-Monedero
  • Juan Morales-Sánchez
  • Jesús Angulo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


The introduction of nonlinear filters which approximate flat dilation and erosion is an issue that has been studied during the past years. In the literature, we can find works which involve the definition of robust morphological-like filters from well-known operators such as the Counter-Harmonic Mean (CHM). The main goal of this paper is to provide the reader with a morphological CHM-based regularization which simultaneously preserve both the structural information in areas of the image with high gradient and the morphological effect in the areas with low gradient. With this purpose, we introduce a suitable mathematical framework and then deal with the variational formulation which is derived from it. Practical aspects of the implementation are discussed and some results are provided to illustrate the behaviour of our approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angulo, J.: Generalised morphological image diffusion. Submitted to Computer Vision and Image UnderstandingGoogle Scholar
  2. 2.
    Angulo, J.: Pseudo-morphological image diffusion using the counter-harmonic paradigm. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part I. LNCS, vol. 6474, pp. 426–437. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Behmardi, D., Nayeri, E.D.: Introduction of Frećhet and Gâteaux derivative. Applied Mathematical Sciences 2(20), 975–980 (2008)MathSciNetzbMATHGoogle Scholar
  4. 4.
    van den Boomgaard, R., Dorst, L.: The morphological equivalent of gaussian scale-space. In: Proc. of Gaussian Scale-Space Theory, pp. 203–220 (1997)Google Scholar
  5. 5.
    Bullen, P.S.: Handbook of Means and their Inequalities, 2nd edn. Springer (1987)Google Scholar
  6. 6.
    Cattle, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 29(1), 182–193 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Darbon, J.: Total variation minimization with l 1 data fidelity as a contrast invariant filter. In: 4th International Symposium on Image and Signal Processing (ISPA), pp. 221–226 (2005)Google Scholar
  8. 8.
    Forsyth, A.R.: Calculus of Variations. Dover Publishing (1960)Google Scholar
  9. 9.
    Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover Publishing (2000)Google Scholar
  10. 10.
    González, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Boston (1992)Google Scholar
  11. 11.
    Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston (1994)zbMATHGoogle Scholar
  12. 12.
    Jackway, P.T., Deriche, M.: Scale-space properties of the multiscale morphological dilation-erosion. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(1), 38–51 (1996)CrossRefGoogle Scholar
  13. 13.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  14. 14.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. I. Academic Press, London (1982)zbMATHGoogle Scholar
  15. 15.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. II: Theoretical Advances. Academic Press, London (1988)Google Scholar
  16. 16.
    Soille, P.: Morphological Image Analysis. Springer (1999)Google Scholar
  17. 17.
    van Vliet, L.J.: Robust local max-min filters by normalized power-weighted filtering. In: Proc. IEEE International Conference of Pattern Recognition, vol. 17, pp. 696–699 (2004)Google Scholar
  18. 18.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  19. 19.
    Weickert, J.: Coherence-enhancing diffusion filtering. International Journal of Computer Vision 31(2-3), 111–127 (1999)CrossRefGoogle Scholar
  20. 20.
    Welk, M.: Families of generalised morphological scale spaces. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 770–784. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jorge Larrey-Ruiz
    • 1
  • Rafael Verdú-Monedero
    • 1
  • Juan Morales-Sánchez
    • 1
  • Jesús Angulo
    • 2
  1. 1.Dept. Tecnologías de la Información y las ComunicacionesUniversidad Politécnica de CartagenaCartagenaSpain
  2. 2.CMM - Centre de Morphologie Mathématique, Mathématiques et SystémesMINES ParistechFontainebleau cedexFrance

Personalised recommendations