The Laplace-Beltrami Operator: A Ubiquitous Tool for Image and Shape Processing

  • Aaron Wetzler
  • Yonathan Aflalo
  • Anastasia Dubrovina
  • Ron Kimmel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


The ubiquity of the Laplace-Beltrami operator in shape analysis can be seen by observing the wide variety of applications where it has been found to be useful. Here we demonstrate a small subset of such uses with their latest developments including a scale invariant transform for general triangulated meshes, an effective and efficient method for denoising meshes using Beltrami flows via high dimensional embeddings of 2D manifolds and finally the possibility of viewing the framework of geodesic active contours as a surface minimization having the Laplace-Beltrami operator as its main ingredient.


Laplace-Beltrami denoising scale invariant active contours segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aflalo, Y., Raviv, D., Kimmel, R.: Scale invariant geometry for non-rigid shapes. Technical report, Technion University (2011)Google Scholar
  2. 2.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  4. 4.
    Bogdanova, I., Bresson, X., Thiran, J.P., Vandergheynst, P.: Scale space analysis and active contours for omnidirectional images. IEEE Transactions on Image Processing 16(7), 1888–1901 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bresson, X., Vandergheynst, P., Thiran, J.-P.: Multiscale active contours. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 167–178. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Bronstein, A.M., Bronstein, M., Guibas, L.J., Ovsjanikov, M.: Shape google: Geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics 30(1), Article 1 (2011)Google Scholar
  7. 7.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Science, pp. 1168–1172 (2006)Google Scholar
  8. 8.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision 89(2-3), 266–286 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Bronstein, M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proc. Computer Vision and Pattern Recognition (CVPR), San Francisco, USA, December 13-18, pp. 1704–1711. IEEE Computer Society (2010)Google Scholar
  10. 10.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  11. 11.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2724–2729 (1991)Google Scholar
  12. 12.
    Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21(1), 5–30 (2006); Special Issue: Diffusion Maps and WaveletsGoogle Scholar
  13. 13.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2080–2095 (2007)Google Scholar
  14. 14.
    Elad (Elbaz), A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 25(10), 1285–1295 (2003)CrossRefGoogle Scholar
  15. 15.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: ACM SIGGRAPH 2001, Los Angeles, CA, August 12-17 (2001)Google Scholar
  16. 16.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2000), pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York (2000)Google Scholar
  17. 17.
    Levy, B.: Laplace-beltrami eigenfunctions towards an algorithm that ”understands” geometry. In: IEEE International Conference on Shape Modeling and Applications (SMI 2006), p. 13 (2006)Google Scholar
  18. 18.
    Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5(3), 313–347 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics 21(4), 807–832 (2002)CrossRefGoogle Scholar
  20. 20.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant geodesic geometry of deformable 3D shapes. In: Computers and Graphics, Herzliya, Israel, June 22-24. Proceedings of Shape Modelling International (SMI 2011), vol. 35(3). Elsevier (2011)Google Scholar
  22. 22.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant geometry of deformable 3D shapes. In: Proc. of Computer vision and Pattern Recognition (CVPR). IEEE Computer Society (June 2011)Google Scholar
  23. 23.
    Roussos, A., Maragos, P.: Tensor-based image diffusions derived from generalizations of the total variation and Beltrami functionals. In: ICIP (September 2010)Google Scholar
  24. 24.
    Sochen, N., Kimmel, R., Bruckstein, A.M.: Diffusions and confusions in signal and image processing. Journal of Mathematical Imaging and Vision 14(3), 195–209 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. on Image Processing, 310–318 (1998)Google Scholar
  26. 26.
    Sochen, N.A.: Stochastic processes in vision: From langevin to beltrami. In: IEEE International Conference on Computer Vision, vol. 1, p. 288 (2001)Google Scholar
  27. 27.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum 28(5), 1383–1392 (2009)CrossRefGoogle Scholar
  28. 28.
    Wetzler, A., Kimmel, R.: Efficient beltrami flow in patch-space. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 134–143. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aaron Wetzler
    • 1
  • Yonathan Aflalo
    • 1
  • Anastasia Dubrovina
    • 1
  • Ron Kimmel
    • 1
  1. 1.Technion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations