Advertisement

Abstract

In theory, there is no problem generalizing morphological operators to colour images. In practice, it has proved quite tricky to define a generalization that “makes sense”. This could be because many generalizations violate our implicit assumptions about what kind of transformations should not matter. Or in other words, to what transformations operators should be invariant. As a possible solution, we propose using frames to explicitly construct operators invariant to a given group of transformations. We show how to create saturation- and rotation-invariant frames, and demonstrate how group-invariant frames can improve results.

Keywords

colour morphology group invariance frames 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angulo, J.: Geometric algebra colour image representations and derived total orderings for morphological operators Part I: Colour quaternions. J. Vis. Commun. Image R. 21(1), 33–48 (2010)CrossRefGoogle Scholar
  2. 2.
    Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition 40(11), 2914–2929 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proceedings of the IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  4. 4.
    Christensen, O.: Frames and Bases: An Introductory Course. Birkhäuser, Springer e-books (2008)Google Scholar
  5. 5.
    Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.: Morphological Operators for Image Sequences. Comput. Vis. Image Und. 62(3), 326–346 (1995)CrossRefGoogle Scholar
  6. 6.
    van de Gronde, J.J., Roerdink, J.B.T.M.: Group-invariant colour morphology based on frames. IEEE Transactions on Image Processing (submitted)Google Scholar
  7. 7.
    Mausfeld, R., Heyer, D. (eds.): Colour Perception: Mind and the physical world. Oxford University Press (November 2003)Google Scholar
  8. 8.
    Serra, J.: Anamorphoses and function lattices. Image Algebra and Morphological Image Processing IV 2030(1), 2–11 (1993)CrossRefGoogle Scholar
  9. 9.
    Serra, J.: The “False Colour” Problem. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 13–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Talbot, H., Evans, C., Jones, R.: Complete Ordering and Multivariate Mathematical Morphology. In: Heijmans, H.J.A.M., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing, pp. 27–34. Kluwer Academic Publishers (1998)Google Scholar
  11. 11.
    Velasco-Forero, S., Angulo, J.: Mathematical Morphology for Vector Images Using Statistical Depth. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 355–366. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jasper J. van de Gronde
    • 1
  • Jos B. T. M. Roerdink
    • 1
  1. 1.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations