A Multivariate Mathematical Morphology Based on Orthogonal Transformation, Probabilistic Extrema Estimation and Distance Optimization

  • Alexandru Căliman
  • Mihai Ivanovici
  • Nöel Richard
  • Gheorghe Toacşe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


Mathematical morphology (MM) is a very popular image processing framework, which offers widely-used non-linear tools. It was introduced for binary and greylevel images, but recently, numerous approaches have been proposed for color or multivariate images. Many of these approaches are based on the lexicographical ordering, which respects the total ordering properties, thus making this approach a very robust solution. However, it also has disadvantages like the subjective prioritization of the components and the perceptual nonlinearities introduced due to color component prioritization. Within this paper, we introduce a new multivariate MM approach, derived from a probabilistic approach, through the optimization of the distance between the estimated pseudo-extrema and vectors within the initial data set. We compare the results generated using the two approaches and a generic lexicographic approach based on Principal Component Analysis as the axis prioritization criteria.


Multivariate Mathematical Morphology Principal Component Analysis Color Image Segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matheron, G.: Random sets and integral geometry. John Wiley and Sons, Inc. (1975)Google Scholar
  2. 2.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. I. Academic Press (1982)Google Scholar
  3. 3.
    Serra, J.: Image Analysis and Mathematical Morphology: Theoretical advances, vol. II. Academic Press Inc. (November 1987)Google Scholar
  4. 4.
    Sternberg, S.: Grayscale morphology. Computer Vision, Graphics, and Image Processing 35(3), 333–355 (1986)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Maragos, P.: A representation theory for morphological image and signal processing. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 586–599 (1989)zbMATHCrossRefGoogle Scholar
  6. 6.
    Maragos, P., Schafer, R.: A unification of linear, median, order-statistics and morphological filters under mathematical morphology. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1985, vol. 10, pp. 1329–1332 (April 1985)Google Scholar
  7. 7.
    Meyer, F., Beucher, S.: The morphological approach of segmentation: the watershed transformation. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing. Marcel Dekker, New York (1992)Google Scholar
  8. 8.
    Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 701–716 (1989)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ronse, C.: Why mathematical morphology needs complete lattices. Signal Processing 21(2), 129–154 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Barnett, V.: The ordering of multivariate data. Journal of the Royal Statistical Society 139(3), 318–355 (1976)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Serra, J.: The “false colour” problem. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 13–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition 40(11), 2914–2929 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Velasco-Forero, S., Angulo, J.: Mathematical morphology for vector images using statistical depth. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 355–366. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Velasco-Forero, S., Angulo, J.: Random projection depth for multivariate mathematical morphology. IEEE Journal of Selected Topics in Signal Processing 6(7), 753–763 (2012)CrossRefGoogle Scholar
  15. 15.
    Plaza, A., Martinez, P., Perez, R., Plaza, J.: A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles. Pattern Recognition 37(6), 1097–1116 (2004)CrossRefGoogle Scholar
  16. 16.
    Aptoula, E., Lefèvre, S.: α-trimmed lexicographical extrema for pseudo-morphological image analysis. Journal of Visual Communication and Image Representation 19(3), 165–174 (2008)CrossRefGoogle Scholar
  17. 17.
    Ivanovici, M., Caliman, A., Richard, N., Fernandez-Maloigne, C.: Towards a multivariate probabilistic morphology for colour images. In: Proceedings of the 6th European Conference on Colour in Graphics, Imaging and Vision, Amsterdam, the Netherlands, May 6-9, pp. 189–193 (2012)Google Scholar
  18. 18.
    Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.: Morphological operators for image sequences. Comput. Vis. Image Underst. 62(3), 326–346 (1995)CrossRefGoogle Scholar
  19. 19.
    Angulo, J.: Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Computer Vision and Image Understanding 107(1-2), 56–73 (2007)CrossRefGoogle Scholar
  20. 20.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer (2002)Google Scholar
  21. 21.
    Papoulis, A.: Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill (1991)Google Scholar
  22. 22.
    Caliman, A., Ivanovici, M., Richard, N.: Probabilistic mathematical morphology for greyscale, color and multivariate images. Submitted to Pattern RecognitionGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexandru Căliman
    • 1
  • Mihai Ivanovici
    • 1
  • Nöel Richard
    • 2
  • Gheorghe Toacşe
    • 1
  1. 1.MIV2 Laboratory, Department of Electronics and ComputersTransilvania UniversityBraşovRomânia
  2. 2.XLIM-SIC UMR CNRS 6172, Signals, Images and CommunicationsUniversity of PoitiersPoitiersFrance

Personalised recommendations