Attribute Controlled Reconstruction and Adaptive Mathematical Morphology

  • Andrés Serna
  • Beatriz Marcotegui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


In this paper we present a reconstruction method controlled by the evolution of attributes. The process begins from a marker, propagated over increasing quasi–flat zones. The evolution of several increasing and non–increasing attributes is studied in order to select the appropriate region. Additionally, the combination of attributes can be used in a straightforward way.

To demonstrate the performance of our method, three applications are presented. Firstly, our method successfully segments connected objects in range images. Secondly, input–adaptive structuring elements (SE) are defined computing the controlled propagation for each pixel on a pilot image. Finally, input–adaptive SE are used to assess shape features on the image.

Our approach is multi–scale and auto–dual. Compared with other methods, it is based on a given attribute but does not require a size parameter in order to determine appropriate regions. It is useful to extract objects of a given shape. Additionally, our reconstruction is a connected operator since quasi–flat zones do not create new contours on the image.


mathematical morphology controlled reconstruction connected operators adaptive SE quasi–flat zones attribute evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matheron, G.: Random Sets and Integral Geometry. John Wiley & Sons, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 2. Academic Press, London (1988)Google Scholar
  3. 3.
    Maragos, P., Vachier, C.: Overview of adaptive morphology: Trends and perspectives, pp. 2241–2244 (2009)Google Scholar
  4. 4.
    Gordon, R., Rangayyan, R.M.: Feature enhancement of film mammograms using fixed and adaptive neighborhoods. Applied Optics 23(4), 560–564 (1984)CrossRefGoogle Scholar
  5. 5.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  6. 6.
    Beucher, S.: Traffic Spatial Measurements Using Video Image Processing. Intelligent Robots and Computer Vision 848, 648–655 (1987)CrossRefGoogle Scholar
  7. 7.
    Verly, J., Delanoy, R.: Adaptive mathematical morphology for range imagery. IEEE Transactions on Image Processing 2(2), 272–275 (1993)CrossRefGoogle Scholar
  8. 8.
    Shih, F.Y., Cheng, S.: Adaptive mathematical morphology for edge linking. Information Sciences 167(1), 9–21 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Talbot, H., Appleton, B.: Efficient complete and incomplete path openings and closings. Image and Vision Computing 25(4), 416–425 (2007)CrossRefGoogle Scholar
  10. 10.
    Pinoli, J.-C., Debayle, J.: General Adaptive neighborhood mathematical morphology. In: 16th IEEE International Conference on Image Processing (ICIP 2009), pp. 2249–2252 (2009)Google Scholar
  11. 11.
    Lerallut, R., Decencière, É., Meyer, F.: Image filtering using morphological amoebas. Image and Vision Computing 25(4), 395–404 (2007)CrossRefGoogle Scholar
  12. 12.
    Morard, V., Decencière, E., Dokládal, P.: Region Growing Structuring Elements and New Operators based on their Shape. In: International conference on Signal and Image Processing (SIP 2011). ACTA Press (2011)Google Scholar
  13. 13.
    Angulo, J.: Morphological Bilateral Filtering and Spatially-Variant Adaptive Structuring Functions. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 212–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Serra, J.: Connectivity on Complete Lattices. Journal of Mathematical Imaging and Vision 9(3), 231–251 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators and filters by reconstruction. IEEE Transactions on Image Processing 4(8), 1153–1160 (1995)CrossRefGoogle Scholar
  16. 16.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Computer Graphics and Image Processing 10(3), 195–223 (1979)CrossRefGoogle Scholar
  17. 17.
    Meyer, F.: From connected operators to levelings. In: Heijmans, H., Roerdink, J. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 12, pp. 191–198. Kluwer Academic Publishers (1998)Google Scholar
  18. 18.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience (2000)Google Scholar
  19. 19.
    Hambrusch, S., He, X., Miller, R.: Parallel Algorithms for Gray-Scale Digitized Picture Component Labeling on a Mesh–Connected Computer. Journal of Parallel and Distributed Computing 20(1), 56–68 (1994)CrossRefzbMATHGoogle Scholar
  20. 20.
    Soille, P.: Constrained connectivity for hierarchical image decomposition and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  21. 21.
    Meyer, F., Vachier, C.: Image segmentation based on viscous flooding simulation. In: Talbot, H., Beare, R. (eds.) Proceedings of the 5th International Symposium on Mathematical Morphology (ISMM 2002), Sydney, Australy, pp. 69–77 (2002)Google Scholar
  22. 22.
    Serra, J.: Viscous Lattices. Journal of Mathematical Imaging and Vision 22, 269–282 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Breen, E.J., Jones, R.: Attribute Openings, Thinnings, and Granulometries. Computer Vision and Image Understanding 64(3), 377–389 (1996)CrossRefGoogle Scholar
  24. 24.
    Salembier, P., Wilkinson, M.H.F.: Connected operators. IEEE Signal Processing Magazine 26(6), 136–157 (2009)CrossRefGoogle Scholar
  25. 25.
    Grazzini, J., Soille, P.: Adaptive Morphological Filtering Using Similarities Based on Geodesic Time. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 519–528. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Hernández, J., Marcotegui, B.: Point Cloud Segmentation towards Urban Ground Modeling. In: Joint Urban Remote Sensing Event, Urban 2009: 5th GRSS/ISPRS, Shangai, China (2009)Google Scholar
  27. 27.
    Serra, J., Salembier, P.: Connected operators and pyramids. SPIE Image Algebra and Morphological Image Processing 2030, 65–76 (1993)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Roerdink, J.B.T.M.: Adaptivity and group invariance in mathematical morphology. In: Proceedings of the International Conference on Image Processing (ICIP 2009), Cairo, Egypt, pp. 2253–2256 (2009)Google Scholar
  29. 29.
    Morard, V., Decencière, E., Dokladal, P.: Geodesic attributes thinnings and thickenings. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 200–211. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Lantuéjoul, C., Maisonneuve, F.: Geodesic methods in quantitative image analysis. Pattern Recognition 17(2), 177–187 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lantuéjoul, C., Beucher, S.: On the use of the geodesic metric in image analysis. Journal of Microscopy 121(1), 39–49 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrés Serna
    • 1
  • Beatriz Marcotegui
    • 1
  1. 1.CMM - Centre de Morphologie Mathématique, Mathématiques et SystèmesMines ParisTechFontainebleau–CedexFrance

Personalised recommendations