Advertisement

Salience-Based Parabolic Structuring Functions

  • Vladimir Ćurić
  • Cris L. Luengo Hendriks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)

Abstract

It has been shown that the use of the salience map based on the salience distance transform can be useful for the construction of spatially adaptive structuring elements. In this paper, we propose salience-based parabolic structuring functions that are defined for a fixed, predefined spatial support, and have low computational complexity. In addition, we discuss how to properly define adjunct morphological operators using the new spatially adaptive structuring functions. It is also possible to obtain flat adaptive structuring elements by thresholding the salience-based parabolic structuring functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoebas. Image and Vision Computing 25(4), 395–404 (2007)CrossRefGoogle Scholar
  2. 2.
    Angulo, J.: Morphological Bilateral Filtering and Spatially-Variant Adaptive Structuring Functions. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 212–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Debayle, J., Pinoli, J.: Spatially Adaptive Morphological Image Filtering using Intrinsic Structuring Elements. Image Analysis and Stereology 24(3), 145–158 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Verdú-Monedero, R., Angulo, J., Serra, J.: Anisotropic morphological filters with spatially-variant structuring elements based on image-dependent gradient fields. IEEE Transactions on Image Processing 20(1), 200–212 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ćurić, V., Luengo Hendriks, C.L., Borgefors, G.: Salience adaptive structuring elements. IEEE Journal of Selected Topics in Signal Processing 6(7), 809–819 (2012)CrossRefGoogle Scholar
  6. 6.
    Grazzini, J., Soille, P.: Edge-preserving smoothing using a similarity measure in adaptive geodesic neighbourhoods. Pattern Recognition 42(10), 2306–2316 (2009)zbMATHCrossRefGoogle Scholar
  7. 7.
    Ćurić, V., Luengo Hendriks, C.L.: Adaptive structuring elements based on salience information. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 321–328. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 2: Theoretical advances. Academic Press, New York (1988)Google Scholar
  9. 9.
    Bouaynaya, N., Charif-Chefchaouni, M., Schonfeld, D.: Theoretical Foundation of Spatially-Variant Mathematical Morphology Part I: Binary Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(5), 823–836 (2008)CrossRefGoogle Scholar
  10. 10.
    Bouaynaya, N., Schonfeld, D.: Theoretical Foundation of Spatially-Variant Mathematical Morphology Part II: Gray-Level Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(5), 837–850 (2008)CrossRefGoogle Scholar
  11. 11.
    Roerdink, J.B.T.M.: Adaptive and group invariance in mathematical morphology. In: Proc. of IEEE International Conference on Image Processing, pp. 2253–2256 (2009)Google Scholar
  12. 12.
    Maragos, P.A., Vachier, C.: Overview of adaptive morphology: Trends and perspectives. In: Proc. of IEEE International Conference on Image Processing, pp. 2241–2244 (2009)Google Scholar
  13. 13.
    Salembier, P.: Study on nonlocal morphology. In: Proc. of IEEE International Conference on Image Processing, pp. 2269–2272Google Scholar
  14. 14.
    Rosin, P., West, G.: Salience distance transforms. CVGIP: Graphical Models and Image Processing 57(6), 483–521 (1995)zbMATHCrossRefGoogle Scholar
  15. 15.
    Rosin, P.: A simple method for detecting salient regions. Pattern Recognition 42(11), 2363–2371 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  17. 17.
    Canny, J.: A Computational Approach To Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  18. 18.
    van den Boomgaard, R.: Mathematical Morphology: Extensions Towards Computer Vision. PhD thesis, University of Amsterdam, Amsterdam (1992)Google Scholar
  19. 19.
    Dorst, L., van den Boomgaard, R.: Morphological Signal Processing and the Slope Transform. Signal Processing 38, 79–98 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vladimir Ćurić
    • 1
  • Cris L. Luengo Hendriks
    • 1
  1. 1.Centre for Image AnalysisUppsala University and Swedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations