Advertisement

Playing with Kruskal: Algorithms for Morphological Trees in Edge-Weighted Graphs

  • Laurent Najman
  • Jean Cousty
  • Benjamin Perret
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)

Abstract

The goal of this paper is to provide linear or quasi-linear algorithms for producing some of the various trees used in mathemetical morphology, in particular the trees corresponding to hierarchies of watershed cuts and hierarchies of constrained connectivity. A specific binary tree, corresponding to an ordered version of the edges of the minimum spanning tree, is the key structure in this study, and is computed thanks to variations around Kruskal algorithm for minimum spanning tree.

Keywords

Binary Tree Minimum Span Tree Catchment Basin Binary Partition Morphological Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE TIP 7(4), 555–570 (1998)Google Scholar
  3. 3.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. CGIP 10(3), 195–223 (1979)Google Scholar
  4. 4.
    Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 187–198. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE TIP 9(4), 561–576 (2000)Google Scholar
  6. 6.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE PAMI 18(12), 1163–1173 (1996)CrossRefGoogle Scholar
  7. 7.
    Morris, O.J., de Lee, M.J., Constantinides, A.G.: Graph theory for image analysis: an approach based on the shortest spanning tree. IEE Proc. on Communications, Radar and Signal 133(2), 146–152 (1986)Google Scholar
  8. 8.
    Ouzounis, G., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 108–119. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle. IEEE PAMI 31(8), 1362–1374 (2009)CrossRefGoogle Scholar
  10. 10.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE PAMI 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  11. 11.
    Meyer, F., Najman, L.: Segmentation, minimum spanning tree and hierarchies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Application, pp. 229–261. ISTE-Wiley, London (2010)Google Scholar
  12. 12.
    Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. JMIV 40(3), 231–247 (2011) arXiv:1002.1887v2Google Scholar
  13. 13.
    Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. In: Proceedings of the AMS, vol. 7, pp. 48–50 (February 1956)Google Scholar
  15. 15.
    Tarjan, R.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Meyer, F.: Minimum spanning forests for morphological segmentation. In: ISMM, pp. 77–84 (September 1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laurent Najman
    • 1
  • Jean Cousty
    • 1
  • Benjamin Perret
    • 1
  1. 1.Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEEUniversité Paris-EstFrance

Personalised recommendations