Incremental SPARQL Query Processing

  • Ana I. Torre-Bastida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)


The number of linked data sources available on the Web is growing at a rapid rate. Moreover, users are showing an interest for any framework that allows them to obtain answers, for a formulated query, accessing heterogeneous data sources without the need of explicitly specifying the sources to answer the query. Our proposal focus on that interest and its goal is to build a system capable of answering to user queries in an incremental way. Each time a different data source is accessed the previous answer is eventually enriched. Brokering across the data sources is enabled by using source mapping relationships. User queries are rewritten using those mappings in order to obtain translations of the original query across data sources. Semantically equivalent translations are first looked for, but semantically approximated ones are generated if equivalence is not achieved. Well defined metrics are considered to estimate the information loss, if any.


Semantic Web Linked Open Data Sources query reformulation query rewriting ontology mapping 


  1. 1.
    Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In: Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 348–353 (2007)Google Scholar
  2. 2.
    Herzig, D., Tran, T.: One query to bind them all. In: COLD 2011, CEUR Workshop Proceedings, vol. 782 (2011)Google Scholar
  3. 3.
    Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in rdf. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 31–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Makris, K., Gioldasis, N., Bikakis, N., Christodoulakis, S.: Ontology mapping and sparql rewriting for querying federated rdf data sources. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010, Part II. LNCS, vol. 6427, pp. 1108–1117. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of. Addison-Wesley (1989)Google Scholar
  8. 8.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: Optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Van Rijsbergen, C.J.: Information Retrieval. Evaluation,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana I. Torre-Bastida
    • 1
  1. 1.Tecnalia Research & InnovationParque Tecnológico EdifVizcayaSpain

Personalised recommendations