Automatic Argumentation Extraction

  • Alan Sergeant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)


This extended abstract outlines the area of automatic argumentation extraction. The state of the art is discussed, and how it has influenced the proposed direction of this work. This research aims to provide decision support by automatically extracting argumentation from natural language, enabling a decision maker to follow more closely the reasoning process, to examine premises and counter-arguments, and to reach better informed decisions.


Argumentation Argument Extraction Information Extraction 


  1. 1.
    Mochales Palau, R.: Automatic Detection and Classification of Argumentation in a Legal Case. PhD thesis, KU Leuven (2011)Google Scholar
  2. 2.
    Walton, D.: Argument mining by applying argumentation schemes. Studies in Logic 4(1), 38–64 (2011)Google Scholar
  3. 3.
    Besnard, P., Hunter, A.: Elements of argumentation, vol. 47. MIT Press (2008)Google Scholar
  4. 4.
    Walton, D.: Argumentation Theory: A Very Short Introduction. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, 1st edn., pp. 1–22. Springer, US (2009)CrossRefGoogle Scholar
  5. 5.
    Baker, G.P., Huntington, H.B.: The Principles of Argumentation. Ginn & Company (1905)Google Scholar
  6. 6.
    Govier, T.: Critical thinking as argument analysis? Argumentation 3(2), 115–126 (1989)CrossRefGoogle Scholar
  7. 7.
    Copi, I., Cohen, C.: Introduction to Logic, 11th edn. Pearson Eductaion (2001)Google Scholar
  8. 8.
    Blair, J.A., Tindale, C.W.: Groundwork in the Theory of Argumentation. Argumentation Library, vol. 21. Springer (2012)Google Scholar
  9. 9.
    Reed, C.: Araucaria: Software for argument analysis, diagramming and representation. International Journal of AI Tools 13(4), 961–980 (2004)CrossRefGoogle Scholar
  10. 10.
    Teufel, S.: Argumentative Zoning: Information Extraction from Scientific Text University of Edinburgh. PhD thesis (1999)Google Scholar
  11. 11.
    Mann, W.C., Thompson, S.A.: Rhetorical structure theory: A framework for the analysis of texts. IPRA Papers in Pragmatics 1(1), 79–105 (1987)Google Scholar
  12. 12.
    Mochales Palau, R., Moens, M.F.: Argumentation Mining: The Detection, Classification and Structure of Arguments in Text. In: Proceedings of the 12th International Conference on Artificial Intelligence and Law, pp. 98–107. ACM (2009)Google Scholar
  13. 13.
    Schneider, J., Wyner, A.: Identifying Consumers Arguments in Text. In: SWAIE 2012: Semantic Web and Information Extraction (2012)Google Scholar
  14. 14.
    Cabrio, E., Villata, S.: Natural Language Arguments: A Combined Approach. In: 20th European Conference on Artificial Intelligence, ECAI 2012 (2012)Google Scholar
  15. 15.
    Ferrucci, D., Lally, A.: UIMA: An Architectural Approach to Unstructured Information Processing in the Corporate Research Environment. Natural Language Engineering 10(3-4), 327–348 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alan Sergeant
    • 1
  1. 1.SAP UK Ltd, The ConcourseBelfastUK

Personalised recommendations