Transductive Inference for Class-Membership Propagation in Web Ontologies

  • Pasquale Minervini
  • Claudia d’Amato
  • Nicola Fanizzi
  • Floriana Esposito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)


The increasing availability of structured machine-processable knowledge in the context of the Semantic Web, allows for inductive methods to back and complement purely deductive reasoning in tasks where the latter may fall short. This work proposes a new method for similarity-based class-membership prediction in this context. The underlying idea is the propagation of class-membership information among similar individuals. The resulting method is essentially non-parametric and it is characterized by interesting complexity properties, that make it a candidate for the application of transductive inference to large-scale contexts. We also show an empirical evaluation of the method with respect to other approaches based on inductive inference in the related literature.


Description Logic Inductive Inference Training Individual Graph Regularization Semantic Similarity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning on large graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 624–638. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press (2006)Google Scholar
  4. 4.
    d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: An inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    d’Amato, C., Staab, S., Fanizzi, N.: On the influence of description logics ontologies on conceptual similarity. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 48–63. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Fanizzi, N., d’Amato, C.: Inductive concept retrieval and query answering with semantic knowledge bases through kernel methods. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 148–155. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Fanizzi, N., d’Amato, C., Esposito, F.: ReduCE: A reduced coulomb energy network method for approximate classification. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 323–337. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Fanizzi, N., d’Amato, C., Esposito, F.: Induction of robust classifiers for web ontologies through kernel machines. J. Web Sem. 11, 1–13 (2012)CrossRefGoogle Scholar
  9. 9.
    Hu, B., Dasmahapatra, S., Lewis, P.: Semantic metrics. Int. J. Metadata Semant. Ontologies 2(4), 242–258 (2007)CrossRefGoogle Scholar
  10. 10.
    Janowicz, K., Wilkes, M.: SIM-DLA: A novel semantic similarity measure for description logics reducing inter-concept to inter-instance similarity. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 353–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for RDF data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 134–148. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Minervini, P., d’Amato, C., Fanizzi, N.: A graph regularization based approach to transductive class-membership prediction. In: Bobillo, F., et al. (eds.) Proceedings of the 8th International Workshop on Uncertainty Reasoning for the Semantic Web, URSW 2012. CEUR Workshop Proceedings, vol. 900, pp. 39–50. (2012)Google Scholar
  13. 13.
    Ochoa-Luna, J.E., Cozman, F.G.: An algorithm for learning with probabilistic description logics. In: Bobillo, F., et al. (eds.) Proceedings of the 5th International Workshop on Uncertainty Reasoning for the Semantic Web, URSW 2009. CEUR Workshop Proceedings, vol. 654, pp. 63–74. (2009)Google Scholar
  14. 14.
    Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the Semantic Web: Statistical learning for next generation knowledge bases. Data Min. Knowl. Discov. 24(3), 613–662 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Rettinger, A., Nickles, M., Tresp, V.: Statistical relational learning with formal ontologies. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS (LNAI), vol. 5782, pp. 286–301. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)Google Scholar
  17. 17.
    Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the 36th ACM Symposium on Theory of Computing, STOC 2004, pp. 81–90. ACM (2004)Google Scholar
  18. 18.
    Vapnik, V.N.: Statistical learning theory, 1st edn. Wiley (September 1998)Google Scholar
  19. 19.
    Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) NIPS. MIT Press (2003)Google Scholar
  20. 20.
    Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed graph. In: Raedt, L.D., Wrobel, S. (eds.) ICML. ACM International Conference Proceeding Series, vol. 119, pp. 1036–1043. ACM (2005)Google Scholar
  21. 21.
    Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. CMU–CALD–02–107. Carnegie Mellon University (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pasquale Minervini
    • 1
  • Claudia d’Amato
    • 1
  • Nicola Fanizzi
    • 1
  • Floriana Esposito
    • 1
  1. 1.LACAM, Dipartimento di InformaticaUniversità degli Studi di Bari “Aldo Moro”BariItalia

Personalised recommendations