Lightweight Spatial Conjunctive Query Answering Using Keywords

  • Thomas Eiter
  • Thomas Krennwallner
  • Patrik Schneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)

Abstract

With the advent of publicly available geospatial data, ontology-based data access (OBDA) over spatial data has gained increasing interest. Spatio-relational DBMSs are used to implement geographic information systems (GIS) and are fit to manage large amounts of data and geographic objects such as points, lines, polygons, etc. In this paper, we extend the Description Logic DL-Lite with spatial objects and show how to answer spatial conjunctive queries (SCQs) over ontologies—that is, conjunctive queries with point-set topological relations such as next and within—expressed in this language. The goal of this extension is to enable an off-the-shelf use of spatio-relational DBMSs to answer SCQs using rewriting techniques, where data sources and geographic objects are stored in a database and spatial conjunctive queries are rewritten to SQL statements with spatial functions. Furthermore, we consider keyword-based querying over spatial OBDA data sources, and show how to map queries expressed as simple keyword lists describing objects of interest to SCQs, using a meta-model for completing the SCQs with spatial aspects. We have implemented our lightweight approach to spatial OBDA in a prototype and show initial experimental results using data sources such as Open Street Maps and Open Government Data Vienna from an associated project. We show that for real-world scenarios, practical queries are expressible under meta-model completion, and that query answering is computationally feasible.

References

  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: IJCAI 2005, pp. 364–369. Morgan-Kaufmann Publishers (2005)Google Scholar
  2. 2.
    Baglioni, M., Masserotti, M.V., Renso, C., Spinsanti, L.: Improving geodatabase semantic querying exploiting ontologies. In: Claramunt, C., Levashkin, S., Bertolotto, M. (eds.) GeoS 2011. LNCS, vol. 6631, pp. 16–33. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Battle, R., Kolas, D.: Enabling the geospatial Semantic Web with Parliament and GeoSPARQL. Semantic Web Journal 3(4), 355–370 (2012)Google Scholar
  4. 4.
    Bicer, V., Tran, T., Abecker, A., Nedkov, R.: KOIOS: Utilizing semantic search for easy-access and visualization of structured environmental data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The query answering problem. Artificial Intelligence 193, 87–128 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. Journal of Automated Reasoning 39(3), 385–429 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Clementini, E., Sharma, J., Egenhofer, M.J.: Modelling topological spatial relations: Strategies for query processing. Computers & Graphics 18(6), 815–822 (1994)CrossRefGoogle Scholar
  9. 9.
    Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., Rau, R.: DO-ROAM: Activity-oriented search and navigation with OpenStreetMaps. In: Claramunt, C., Levashkin, S., Bertolotto, M. (eds.) GeoS 2011. LNCS, vol. 6631, pp. 88–107. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Egenhofer, M.J., Franzosa, R.D.: Point set topological relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  11. 11.
    Fu, G., Jones, C.B., Abdelmoty, A.I.: Ontology-based spatial query expansion in information retrieval. In: Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2005, Part II. LNCS, vol. 3761, pp. 1466–1482. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries. Journal of the ACM 48(3), 431–498 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Güting, R.H.: Geo-relational algebra: A model and query language for geometric database systems. In: Schmidt, J.W., Missikoff, M., Ceri, S. (eds.) EDBT 1988. LNCS, vol. 303, pp. 506–527. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  14. 14.
    Haarslev, V., Lutz, C., Möller, R.: A description logic with concrete domains and a role-forming predicate operator. Journal of Logic and Computation 9(3), 351–384 (1999)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Kutz, O., Wolter, F., Zakharyaschev, M.: A note on concepts and distances. In: DL 2001. CEUR-WS, vol. 49 (2001)Google Scholar
  16. 16.
    Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A semantic geospatial DBMS. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and general TBoxes. Journal of Automated Reasoning 38(1-3), 227–259 (2007)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Özçep, Ö.L., Möller, R.: Scalable geo-thematic query answering. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 658–673. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: KR 1992, pp. 165–176. Morgan Kaufmann (1992)Google Scholar
  20. 20.
    Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: KR 2010, pp. 290–300. AAAI Press (2010)Google Scholar
  21. 21.
    Stocker, M., Sirin, E.: Pelletspatial: A hybrid RCC-8 and RDF/OWL reasoning and query engine. In: OWLED 2009. Springer, Heidelberg (2009)Google Scholar
  22. 22.
    Stocker, M., Smith, M.: Owlgres: A scalable OWL reasoner. In: OWLED 2008. Springer, Heidelberg (2008)Google Scholar
  23. 23.
    Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation of keywords for semantic search. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 523–536. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Uren, V.S., Lei, Y., Motta, E.: SemSearch: Refining semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 874–878. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From keywords to semantic queries - incremental query construction on the semantic web. J. Web Semant. 7(3), 166–176 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Thomas Krennwallner
    • 1
  • Patrik Schneider
    • 1
  1. 1.Institut für InformationssystemeTechnische Universität WienViennaAustria

Personalised recommendations