Skip to main content

Generalized Gradient on Vector Bundle – Application to Image Denoising

  • Conference paper
Book cover Scale Space and Variational Methods in Computer Vision (SSVM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7893))

Abstract

We introduce a gradient operator that generalizes the Euclidean and Riemannian gradients. This operator acts on sections of vector bundles and is determined by three geometric data: a Riemannian metric on the base manifold, a Riemannian metric and a covariant derivative on the vector bundle. Under the assumption that the covariant derivative is compatible with the metric of the vector bundle, we consider the problems of minimizing the L2 and L1 norms of the gradient. In the L2 case, the gradient descent for reaching the solutions is a heat equation of a differential operator of order two called connection Laplacian. We present an application to color image denoising by replacing the regularizing term in the Rudin-Osher-Fatemi (ROF) denoising model by the L1 norm of a generalized gradient associated with a well-chosen covariant derivative. Experiments are validated by computations of the PSNR and Q-index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batard, T.: Heat Equations on Vector Bundles - Application to Color Image Regularization. J. Math. Imaging Vis. 41(1-2), 59–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batard, T., Sochen, N.: A Class of Generalized Laplacians Devoted to Multi-Channel Image Processing. To Appear in J. Math. Imaging Vis., doi 10.1007/s10851-013-0426-7

    Google Scholar 

  3. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer (2004)

    Google Scholar 

  4. Blomgren, P., Chan, T.F.: Color TV: Total Variation Methods for Restoration of Vector-Valued Images. IEEE Trans. Image Processing 7(3), 304–309 (1998)

    Article  Google Scholar 

  5. Buades, A., Coll, B., Morel, J.-M.: A Review of Image Denoising Algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dabov, K., Foi, V., Katkovnik, V., Egiazarian, K.: Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Processing 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  7. Getreuer, P.: Rudin-Osher-Fatemi Total Variation Denoising using Split Bregman. Image Processing On Line (2012)

    Google Scholar 

  8. Gilboa, G., Osher, S.: Nonlocal Operators with Applications to Image Processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldstein, T., Osher, S.: The Split Bregman Method for L1 Regularized Problems. SIAM J. Imaging Sciences 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jin, Y., Jost, J., Wang, G.: A New Nonlocal H 1 Model for Image Denoising. To Appear in J. Math. Imaging Vis., doi 10.1007/s10851-012-0395-2

    Google Scholar 

  11. Kodak, http://r0k.us/graphics/kodak/

  12. Konderak, J.J.: On Sections of Fiber Bundles which are Harmonic Maps. Bull. Math. Soc. Sci. Math. Roumanie 90(4), 341–352 (1999)

    MathSciNet  Google Scholar 

  13. Lawson, H.B., Michelson, M.-L.: Spin Geometry. Princeton University Press (1989)

    Google Scholar 

  14. Lysaker, M., Osher, S., Tai, X.-C.: Noise Removal using Smoothed Normals and Surface Fitting. IEEE Trans. Image Processing 13(10), 1345–1357 (2004)

    Article  MathSciNet  Google Scholar 

  15. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An Iterative Regularization Method for Total Variation-based Image Restoration. Multiscale Model. Simul. 4(2), 460–489 (2004)

    Article  MathSciNet  Google Scholar 

  16. Rahman, T., Tai, X.-C., Osher, S.J.: A TV-Stokes Denoising Algorithm. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 473–483. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Rosman, G., Tai, X.-C., Dascal, L., Kimmel, R.: Polyakov Action Minimization for Efficient Color Image Processing. In: Kutulakos, K.N. (ed.) ECCV 2010 Workshops, Part II. LNCS, vol. 6554, pp. 50–61. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Rosman, G., Wang, Y., Tai, X.-C., Kimmel, R., Bruckstein, A.M.: Fast Regularization of Matrix-Valued Images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 173–186. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  20. Sochen, N., Kimmel, R., Malladi, R.: A General Framework for Low Level Vision. IEEE Trans. Image Processing 7(3), 310–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish or Perish, 2nd edn. (1990)

    Google Scholar 

  22. Spira, A., Kimmel, R., Sochen, N.: A Short-time Beltrami Kernel for Smoothing Images and Manifolds. IEEE Trans. Image Processing 16, 1628–1636 (2007)

    Article  MathSciNet  Google Scholar 

  23. Wang, Z., Bovik, A.: A Universal Image Quality Index. IEEE Signal Processing Letters 9(3), 81–84 (2002)

    Article  Google Scholar 

  24. Weickert, J., Brox, T.: Diffusion and Regularization of Vector- and Matrix-Valued Images. In: Nashed, M.Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, vol. 313, pp. 251–268. AMS, Providence (2002)

    Chapter  Google Scholar 

  25. Zhu, W., Chan, T.F.: Image Denoising using Mean Curvature of Image Surface. SIAM J. Imaging Sciences 5(1), 1–32 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batard, T., Bertalmío, M. (2013). Generalized Gradient on Vector Bundle – Application to Image Denoising. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics