Skip to main content

Magnetic Properties of Uncultivated Magnetotactic Bacteria

  • Chapter
  • First Online:
Diversity, Biomineralization and Rock Magnetism of Magnetotactic Bacteria

Part of the book series: Springer Theses ((Springer Theses))

  • 633 Accesses

Abstract

Magnetite is a stable carrier of natural remanent magnetization in sedimentary rocks and sediments. Studies of magnetite preserved in sediments provide novel knowledge in paleomagnetic directions and paleointensity of the geomagnetic field. However, our understanding of magnetic properties of ultrafine-grained magnetite particles is still very poor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alphandéry, E., Carvallo, C., Menguy, N., & Chebbi, I. (2011). Chains of cobalt eoped magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. Journal of Physical Chemistry C, 115, 11920–11924.

    Article  Google Scholar 

  • Barber, D. J., & Scott, E. R. D. (2002). Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proceedings of the National Academy of Sciences of the United States of America, 99, 6556–6561.

    Article  Google Scholar 

  • Carter-Stiglitz, B., Moskowitz, B., & Jackson, M. (2001). Unmixing magnetic assemblages and the magnetic behavior of bimodal mixtures. Journal of Geophysical Research, 106, 26397–26411.

    Article  Google Scholar 

  • Carter-Stiglitz, B., Jackson, M., & Moskowitz, B. (2002). Low-temperature remanence in stable single domain magnetite. Geophysical Research Letters, 29. doi:10.1029/2001GL014197.

  • Chen, A.P., Egli, R., and Moskowitz, B.M. (2007) First-order reversal curve (FORC) diagrams of natural and cultured biogenic magnetic particles. Journal of Geophysical Research, 112: doi:10.1029/2006JB004575.

  • Cisowski, S. (1981). Interacting vs. non-interacting single domain behavior in natural and synthetic samples. Physics of the Earth and Planetary Interiors, 26, 56–62.

    Article  Google Scholar 

  • Dankers, P. (1981). Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite. Geophysical Journal of the Royal Astronomical Society, 64, 447–461.

    Article  Google Scholar 

  • Dunlop, D. J. (2002a). Theory and application of the day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107. doi:10.1029/2001JB000486.

  • Dunlop, D.J. (2002b) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. Journal of Geophysical Research, 107. doi:10.1029/2001JB000487.

  • Egli, R. (2004). Characterization of individual rock magnetic components by analysis of remanence curves. 3. Bacterial magnetite and natural processes in lakes. Physics and Chemistry of the Earth, 29, 869–884.

    Article  Google Scholar 

  • Fischer, H., Mastrogiacomo, G., Loffler, J. F., Warthmann, R. J., Weidler, P. G., & Gehring, A. U. (2008). Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense. Earth and Planetary Science Letters, 270, 200–208.

    Article  Google Scholar 

  • Golden, D., Ming, D., Morris, R., Brearley, A., Lauer, H., Treiman, A., et al. (2004). Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. American Mineralogist, 89, 681–695.

    Google Scholar 

  • Jimenez-Lopez, C., Romanek, C. S., & Bazylinski, D.A. (2010). Magnetite as a prokaryotic biomarker: A review. Journal of Geophysical Research-Biogeosciences 115. doi:10.1029/2009JG001152

  • Kopp, R. E., Weiss, B. P., Maloof, A. C., Vali, H., Nash, C. Z., & Kirschvink, J. L. (2006). Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy. Earth and Planetary Science Letters, 247, 10–25.

    Article  Google Scholar 

  • Lang, C., Schüler, D., & Faivre, D. (2007). Synthesis of magnetite nanoparticles for bio- and nanotechnology: Genetic engineering and biomimetics of bacterial magnetosomes. Macromolecular Biosafety, 7, 144–151.

    Article  Google Scholar 

  • Li, J., Pan, Y., Chen, G., Liu, Q., Tian, L., & Lin, W. (2009). Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1: Transmission electron microscopy and magnetic observations. Geophysical Journal International, 177, 33–42.

    Article  Google Scholar 

  • Li, J., Pan, Y., Liu, Q., Yu-Zhang, K., Menguy, N., Che, R., et al. (2010). Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. Earth and Planetary Science Letters, 293, 368–376.

    Article  Google Scholar 

  • Lin, W., & Pan, Y. (2009). Uncultivated magnetotactic cocci from Yuandadu park in Beijing, China. Applied and Environment Microbiology, 75, 4046–4052.

    Article  Google Scholar 

  • Lippert, P. C., & Zachos, J.C. (2007). A biogenic origin for anomalous fine-grained magnetic material at the Paleocene-Eocene boundary at Wilson Lake, New Jersey. Paleoceanography, 22. doi:10.1029/2007PA001471.

  • Martel, J., Young, D., Peng, H–. H., Wu, C.-Y., & Young, J. D. (2012). Biomimetic properties of minerals and the search for life in the Martian meteorite ALH84001. Annual Review of Earth and Planetary Sciences, 40, 167–193.

    Article  Google Scholar 

  • McKay, D., Gibson, E., Thomas-Keprta, K., Vali, H., Romanek, C., Clemett, S., et al. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930.

    Article  Google Scholar 

  • Moskowitz, B. M. (1988). Magnetic properties of magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 73, 273–288.

    Article  Google Scholar 

  • Moskowitz, B. M., Frankel, R. B., & Bazylinski, D. A. (1993). Rock magnetic criteria for the detection of biogenic magnetite. Earth and Planetary Science Letters, 120, 283–300.

    Article  Google Scholar 

  • Moskowitz, B. M., Frankel, R. B., Bazylinski, D. A., Jannasch, H. W., & Lovley, D. R. (1989). A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria. Geophysical Research Letters, 16, 665–668.

    Article  Google Scholar 

  • Moskowitz, B. M., Bazylinski, D. A., Egli, R., Frankel, R. B., & Edwards, K. J. (2008). Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA). Geophysical Journal International, 174, 75–92.

    Article  Google Scholar 

  • Muxworthy, A. R., & Williams, W. (2009). Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals. Journal of the Royal Society Interface, 6, 1207–1212.

    Article  Google Scholar 

  • Pósfai, M., Moskowitz, B. M., Arato, B., Schüler, D., Flies, C., Bazylinski, D. A., et al. (2006). Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth and Planetary Science Letters, 249, 444–455.

    Article  Google Scholar 

  • Pan, Y., Deng, C., Liu, Q., Petersen, N., & Zhu, R. (2004). Biomineralization and magnetism of bacterial magnetosomes. Chinese Science Bulletin, 49, 2563–2568.

    Article  Google Scholar 

  • Pan, Y., Petersen, N., Winklhofer, M., Davila, A., Liu, Q., Frederichs, T., et al. (2005). Rock magnetic properties of uncultured magnetotactic bacteria. Earth and Planetary Science Letters, 237, 311–325.

    Article  Google Scholar 

  • Pike, C. R., Roberts, A. P., & Verosub, K. L. (1999). Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics, 85, 6660–6667.

    Article  Google Scholar 

  • Prozorov, R., Prozorov, T., Mallapragada, S. K., Narasimhan, B., Williams, T. J., & Bazylinski, D. A. (2007), Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Physical Review B, 76. doi:10.1103/PhysRevB.1176.054406.

  • Roberts, A. P., Pike, C. R., & Verosub, K. L. (2000). First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research-Solid Earth, 105, 28461–28475.

    Article  Google Scholar 

  • Sprowl, D. R. (1990). Numerical estimation of interactive effects in single-domain magnetite. Geophysical Research Letters, 17, 2009–2012.

    Article  Google Scholar 

  • Staniland, S., Williams, W., Telling, N., van der Laan, G., Harrison, A., & Ward, B. (2008). Controlled cobalt doping of magnetosomes in vivo. Nature Nanotechnology, 3, 158–162.

    Article  Google Scholar 

  • Thomas-Keprta, K. L., Clemett, S. J., McKay, D. S., Gibson, E. K., & Wentworth, S. J. (2009). Origins of magnetite nanocrystals in Martian meteorite ALH84001. Geochimica et Cosmochimica Acta, 73, 6631–6677.

    Article  Google Scholar 

  • Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., Kirschvink, J. L., McKay, D. S., Wentworth, S. J., et al. (2001). Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures. Proceedings of the National Academy of Sciences of the United States of America, 98, 2164–2169.

    Article  Google Scholar 

  • Weiss, B. P., Kim, S. S., Kirschvink, J. L., Kopp, R. E., Sankaran, M., Kobayashi, A., et al. (2004a). Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proceedings of the National Academy of Sciences of the United States of America, 101, 8281–8284.

    Article  Google Scholar 

  • Weiss, B. P., Kim, S. S., Kirschvink, J. L., Kopp, R. E., Sankaran, M., Kobayashi, A., et al. (2004b). Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite. Earth and Planetary Science Letters, 224, 73–89.

    Article  Google Scholar 

  • Xie, J., Chen, K., & Chen, X. Y. (2009). Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Research, 2, 261–278.

    Article  Google Scholar 

  • Yoshino, T., Maeda, Y., & Matsunag, T. (2010). Bioengineering of bacterial magnetic particles and their applications in biotechnology. Recent Patents on Biotechnology, 4, 214–225.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lin, W. (2013). Magnetic Properties of Uncultivated Magnetotactic Bacteria. In: Diversity, Biomineralization and Rock Magnetism of Magnetotactic Bacteria. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38262-8_5

Download citation

Publish with us

Policies and ethics