Skip to main content

Relative Optical Navigation for a Lunar Lander Mission

  • Conference paper
Advances in Aerospace Guidance, Navigation and Control

Abstract

This work explores the problem of providing relative velocity navigation for an autonomous precision landing approach on the moon without the use of telemetry or known points of support. An error-state Unscented Kalman Filter for the fusion of inertial and optical imaging sensors is presented. These sensors include a star tracker, a monocular surface camera and a laser altimeter. The filter estimates position, velocity and attitude, which, together with an initial position based on crater matching, allows for trajectory following to the surface. A main difficulty is the scale ambiguity in optical flow. The laser altimeter has been included to resolve this ambiguity and allow for velocity and altitude estimation. The scenario of a lunar landing from parking orbit was chosen to test and verify the developed navigation method in simulation using a high resolution surface model of the moon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brady, T., Bailey, E., Crain, T., Paschall, S.: ALHAT System Validation. In: 8th International ESA Conference on Guidance, Navigation & Control Systems, Karlovy Vary, Czech Republic. ESA (June 2011)

    Google Scholar 

  2. Farrenkopf, R.L.: Analytic Steady-State Accuracy Solutions for Two Common Spacecraft Attitude Estimators. Journal of Guidance and Control 1(4), 282–284 (1978)

    Article  Google Scholar 

  3. Flandin, G., Polle, B., Frapard, B., Vidal, P., Philippe, C., Voirin, T.: Vision based navigation for planetary exploration. In: Advances in the Astronautical Sciences, vol. 133, pp. 277–296 (February 2009)

    Google Scholar 

  4. Frapard, B., Mancuso, S.: Vision Navigation for European Landers and the NPAL Project. In: 6th International ESA Conference on Guidance, Navigation and Control Systems, Loutraki, Greece. ESA (October 2005)

    Google Scholar 

  5. Johnson, A.E., Ansar, A., Matthies, L.H., Trawny, N., Mourikis, A.I., Roumeliotis, S.I.: A General Approach to Terrain Relative Navigation for Planetary Landing. In: Infotech, Rohnert Park, California, United States. AIAA (May 2007)

    Google Scholar 

  6. Julier, S., Uhlmann, J.K.: Handbook of Multisensor Data Fusion. In: Data Fusion in Nonlinear Systems, ch. 13. CRC Press LLC (2001)

    Google Scholar 

  7. Julier, S.J., Uhlmann, J.K.: A New Extension of the Kalman Filter to Nonlinear Systems. In: Proceedings of SPIE, vol. 3068, pp. 182–193 (1997)

    Google Scholar 

  8. Julier, S.J., Uhlmann, J.K.: Unscented Filtering and Nonlinear Estimation. Proceedings of the IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  9. Kato, M., Sasaki, S., Takizawa, Y.: The kaguya mission overview. Space Science Reviews 154, 3–19 (2010), 10.1007/s11214-010-9678-3

    Article  Google Scholar 

  10. Krüger, H., Theil, S.: TRON - Hardware-in-the-loop test facility for lunar descent and landing optical navigation. In: 18th IFAC Symposium on Automatic Control in Aerospace. IFAC (2010)

    Google Scholar 

  11. Lee, D., Pernicka, H.: Vision-Based Relative State Estimation Using the Unscented Kalman Filter. International Journal of Aeronautical and Space Sciences 12(1), 24–36 (2011)

    Article  Google Scholar 

  12. Li, S., Cui, P., Cui, H.: Autonomous Navigation and Guidance for Landing on Asteroids. Aerospace Science and Technology 10(3), 239–247 (2006)

    Article  MATH  Google Scholar 

  13. Li, S., Cui, P., Cui, H.: Vision-aided Inertial Navigation for Pinpoint Planetary Landing. Aerospace Science and Technology 11(6), 499–506 (2007)

    Article  Google Scholar 

  14. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: International Joint Conference on Artificial Intelligence, vol. 3, pp. 674–679 (August 1981)

    Google Scholar 

  15. Mourikis, A.I., Trawny, N., Roumeliotis, S.I., Johnson, A.E., Ansar, A., Matthies, L.: Vision-aided Inertial Navigation for Spacecraft Entry, Descent, and Landing. IEEE Transactions on Robotics 25(2), 264–280 (2009)

    Article  Google Scholar 

  16. Roumeliotis, S.I., Sukhatme, G.S., Bekey, G.A.: Smoother based 3D Attitude Estimation for Mobile Robot Localization. In: IEEE International Conference on Robotics and Automation, Detroit, MI, USA, pp. 1979–1986 (May 1999)

    Google Scholar 

  17. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA Education Series (2003) ISBN 1-56347-563-4

    Google Scholar 

  18. Steffes, S.: Extended Kalman Filter for HNS Navigator. Technical report, DLR (May 2011)

    Google Scholar 

  19. Striepe, S.A., Epp, C.D., Robertson, E.A.: Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) Project Status as of May 2010. In: International Planetary Probe Workshop 2010, Barcelona, Spain (June 2010)

    Google Scholar 

  20. Verveld, M.J., Chu, Q.P., de Wagter, C., Mulder, J.A.: Optic Flow Based State Estimation for an Indoor Micro Air Vehicle. In: Guidance, Navigation, and Control Conference and Exhibit, Toronto, Ontario Canada. AIAA (August 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Verweld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verweld, M.J. (2013). Relative Optical Navigation for a Lunar Lander Mission. In: Chu, Q., Mulder, B., Choukroun, D., van Kampen, EJ., de Visser, C., Looye, G. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38253-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38253-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38252-9

  • Online ISBN: 978-3-642-38253-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics